UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--EVALUATION OF THE CAPACITY OF SANDFILES, PHLEBOTOMIDAE, FOR
AUTHOR-(02)-YELISEYEV, L.N., STRELKOVA, M.V.

COUNTRY OF INFO--USSR

SOURCE-MEDITSINSKAYA PARAZITOLOGIYA I PARAZITARNYYE BOLEZNI, 1970, VOL 39, NR 3, PP 284-293 DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-LEISHMANIA, RODENT, INSECTA

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--2000/0277

STEP NO--UR/0358/70/039/003/0284/0293

CIRC ACCESSION NO--APO124037

UNCLASSIFIED

011 . UNCLASSIFIED CIRC ACCESSION NO--AP0124037 PROCESSING DATE--230CT70 ABSTRACT/EXTRACT--(U) GP-0-OF SNADFLIES ON GREAT GERBILS (RHOMBOMYS OPIMUS) UNDER CONDITIONS ABSTRACT. A SERIES OF EXPERIMENTS ON FEEDING APPROACHING THOSE IN RODENT BURROWS WAS CARRIED DUT. AMONG SANDLFIES FED ON GREAT GERBILS, THE INFECTION RATE WITH LEISHMANIA TROPICA MAJOR WAS FOUND TO BE 59-75PERCENT IN PHLEBOTOMUS CAUCASICUS, 53PERCENT IN PH. PAPATASI, 7-21PERCENT IN SERGENTOMY IA ARPAKLENSIS, 24PERCENT IN S. GERKOVI. THE INFECTION RATE OF SANDFLIES DEPENDED ON THE INTENSITY OF MANIFESTATION OF SPECIFIC LEISHMANIAL LESIONS ON SKIN OF THE EARS OF THE GERBILS DONORS. DEPENDING ON THIS FACTOR, THE INFECTION RATE OF PH. PAPATASI VARIED FROM 7 TO 53PERCENT. TRANSMISSION OF L. T. MAJOR FROM SICK GREAT GERBILS TO HEALTHY ANIMALS HAS BEEN FIRST PROVEN FOR PH. CAUCASICUS AND CONFIRMED FOR PH. PAPATASI UNDER EXPERIMENTAL CONDITIONS. ATTEMPTS TO TRANSMIT THE INFECTION THROUGH S. ARPAKLENSIS FAILED BECAUSE THE LATTER REFUSED TO FEED AGAIN ON GERBILS. INCUBATION PERIOD IN GREAT GERBILS AFTER INFECTIVE BLOOD SUCKING BY PH. CAUCASICUS WAS 13 DAYS AND PH. PAPATASI 15 DAYS. SANDFLIES PICKED UP L. T. MAJOR IMMEDIATELY AFTER TERMINATION OF THE CLINICAL INCUBATION PERIOD IN GREAT GERBILS. FACILITY: OTDEL MEDITSINSKOY PROTOZOOLOGII I KARSHINSKAYA PROTIVOLEYSHMANIOZNAYA EKSPEDITSIYA INSTITUTA MEDITSINSKOY PARAZITOLOGII I TROPICHESKOY MEDITSINY IM. YE. I. MARTSINOVSKOGO MZ. UNCLASSIFIED

USSR

UDC: 621.373.042.029.64:621.385.623

YELISEYEV, N. I.

"On Analysis of a Two-Tank Frequency Stabilization System for a Reflective Klystron"

Elektron. tekhn. Nauchno-tekhn. sb. Elektron. SVCh (Electronic Technology. Scientific and Technical Collection. SHF Electronics), 1970, vyp. 9, pp 66-78 (from RZh-Radiotekhnika, No 12, Dec 70, Abstract No 12D386)

Translation: A relationship is found for the parameters of a two-tank system under conditions of emission stability of oscillations with a required frequency over a fairly wide tuning band controlled by a stabilizing resonator. It is shown that connection of the load to the stabilizing resonator gives better experimental characteristics for the system than connection to the main (active) resonator. Six illustrations, bibliography of four titles. Resume.

1/1

— 102 **—** 

UDC: 621.373.826 USSR

YELISEYEV, P. G., IVANOV, L. P., LOGGINOV, A. S., SENATOROV, K. Ya.

"Frequency Self-Modulation of Emission in an Injection Laser"

Kratkiye soobshch. po fiz. (Brief Reports on Physics), 1972, No 6, pp 53-55 (from RZh-Radiotekhnika, No 12, Dec 72, abstract No 12D148 by A. K.)

Translation: Spectral chronograms with a resolution of 3.10-11-10-10 s are obtained for an isolated emission channel in a strip laser based on a double heterostructure at 300°K. It is evident from these chronograms that frequency self-modulation indicates instability of single-mode emission, and that this self-modulation accompanies buildup of pulsations and cutoff of single-mode emission with a transition to nonstationary (spike) multimode emission. Frequency self-modulation leads to considerable broadening of the individual excited modes, and to blurring of the spectrum. The influence of the frequency self-modulation on the emission spectrum increases with an increase in pumping.

1/1

CIA-RDP86-00513R002203630003-2"

**APPROVED FOR RELEASE: 09/01/2001** 

USSR

UDC 543.42:621.378.325

YELISEYEV, P.G.

"Heterojunction Injection Lasers (Review)"

Kvantovaya elektronika (Quantum Electronics), Moscow, No 6(12), 1972, pp 3-28

Abstract: In the last few years progress in the field of semiconductor lesers has been connected with the use of heterojunctions. The first suggestions concerning the use of heterojunctions in lasers were made as early as 1965, shortly after the creation of the injection laser. Realization of the advantages of heterolasers became possible because of the mastering of methods of epitaxial growth of multilayer structures based on the solid solutions (Al,Ga)As. Forfection of heterojunctions in this system is due to the fact that solid solutions of various compositions, including gallium arsenide, possess practically identical crystal lattices. This in turn in connected with the proximity of the covalent radii of gallium and aluminum. Thus there are a number of solid solutions in which the mutual substitution of gallium and aluminum leads to negligible changes in a sufficiently wide range. Of their number, two systems (Al,Ga)As number of heterostructures suitable for injection lasers can be formed on the

USSR

YELISEYEV, P. G., Kvantovaya elektronika, No 6(12), 1972, pp 3-28

basis of one or more heterojunctions and p-n junctions. The lowest threshold currents at room temperature (less than 1 ks/cm²) were obtained with the aid of two-sided heterostructures of type n(Al,Ga)As-pGaAs-p(Al,Ga)As. Because of this it was possible for the first time to obtain continuous generation in injection lasers at room temperature (up to 355° K). Recently, the differential efficiency of heterolasers which are cooled increased to values of 0.7. Data on spectral, threshold, and output power characteristics are presented for various types of heterojunction lasers. Further opportunities for application of heterostructures in injection lasers are discussed. 22 ill. 5 tab. 74 ref. Received by editors, 18 March 1972.

2/2

. 63.

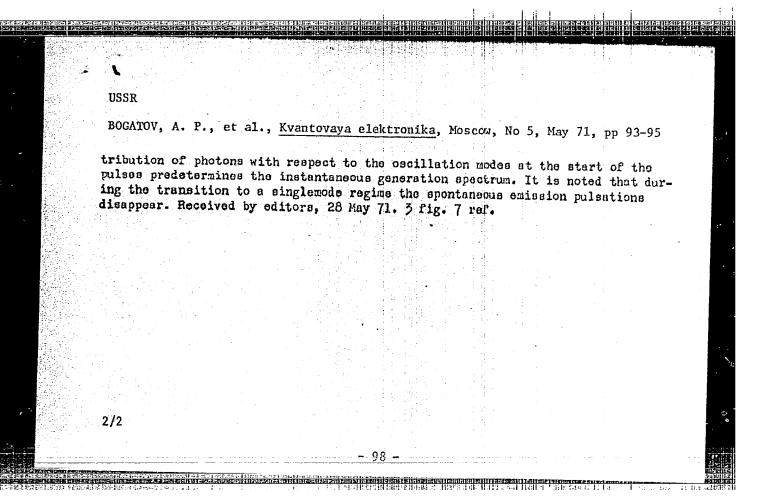
era eguara e sa 7 de 2 a eu control do como en el como son de como en el como en el como en el como en el como En esa esa esa en en en el como e

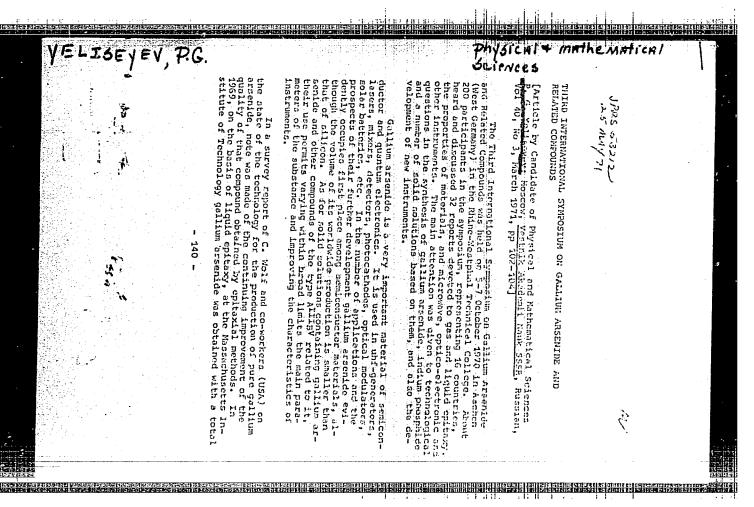
USSR

UDC 621.378.35

BOGATOV, A.P., YELISEYEV, P.G., PANTELEYEV, V.I., SHEVCHENKO, YE.G.

"Comparison Of Instantaneous And Average Emission Spectrum Of An Injection Laser In A Regime Of Spontaneous Pulsations"


Kvantovaya elektronika, Moscow, No 5, May 71, pp 95-95


Abstract: A comparison is made of the spectra of the miltimode generation of an injection laser, obtained with averaging during not more than 10-10 sec ("instantaneous" spectrum) and during 105 pumping pulses ("average" spectrum). A "Kontrol'-2" photoelectron recorder and a DFS-8 diffraction spectograph were used for observation of spectra with a large resolving time. A number of models of lasers based on heterostructures in the system Gaks-Alas and operating at 300° K were studied. The data presented in the paper pertain to a diode with a typical behavior for all the models studied which has a one-way heterostructure and a Fabry-Perot resonator with a length of 347 micrometer and a width of 200 micrometer. A pulse of the pumping current had a duration of 200 nace, a repetition frequency of 5--500 Hz, and an amplitude up to 40 amp. With the presence of deep pulsations of laser emission, the instantaneous spectrum in the separate pulses strongly differs from the average and contains an arbitrary set of modes of the number observed in the average spectrum. It is assumed that the random dis-

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

ระยายะ ระยากายรายรายกระทางการของสายการทางการทางการทางการทางการทางการทางการทางการทางการทางการทางการทางการทางการ





USSR

UDC: 621.373:530.145.6

DOLGINOV, L. M., DRUZHININA, L. V., YELISEYEV, P. G., KHRASAVIN, I. V., LIBOV, L. D.

"Continuous Emission in Semiconductor Lasers at Room Temperature"

Kratkiye soobshch. po fiz. (Brief Reports on Physics), 1971, No 2, pp 57-63 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6D158)

Translation: The authors describe injection lasers based on symmetric heterostructures with strip geometry operating in the continuous mode at a temperature of 300°K. The heterostructures are produced by the method of liquid epitaxy from solutions in gallium. A layer of N-type AlxGal-xAs 2-5  $\mu$  thick doped with tin (N emitter) was grown on a substrate of N-type GaAs oriented in plane (100), followed by a layer of N-type GaAs (undoped) or P-type germanium-doped GaAs (active layer) 0.4-1.2 µ thick, a layer of P-type germanium-doped AlxGal-xAs 1.7-2.5 u thick (P-emitter), and finally a fourth layer of P-type GaAs (with germanium) to make a low-resistance contact no more than 2  $\mu$  thick. A silicon dioxide film was deposited on the P-side of the heterostructure, and bands 15  $\mu$  thick were photographically etched in this film in direction [110]. The value of x was typically 1/2

**APPROVED FOR RELEASE: 09/01/2001** CIA-RDP86-00513R002203630003-2"

DOLGINOV, L. M. et al., Kratkiye soobshch. po fiz., 1971, No 2, pp 57-63

0.2-0.4. Measurements showed that the main pumping power is released in a band 18-20  $\mu$  wide. It is shown that the necessary conditions for obtaining continuous emission are low threshold current density, which is realizable sc far only in symmetric heterostructures, a thin diode base, and low series resistance of the diode (per unit area of the active region). A. K.

2/2

110--

USSR

UDC: 621.373:530.145.6

AKERMAN, D., YELISEYEV, P. G., KAYPER, A., MAN'KO, M. A., RAAB, Z.

"Methods of Mode Selection in Injection Semiconductor Masers"

V sb. Kvant. elektronika (Quantum Electronics -- collection of works), No 1, Moscow, 1971, pp 85-90 (from RZh-Radiotekhnika, No 5, May 71, Abstract No 5D173)

Translation: In order to improve the spectral composition of emission from an injection semiconductor maser, especially to increase the output power in one wave mode, external elements having spectral selectivity were introduced into the maser cavity. The following modifications were experimentally studied: a) a composite cavity; b) a cavity with an interference filter; c) two optically coupled cavities of the Fabry-Perot type with different lengths. The effect of the external selective element in the maser emission spectrum is observed in all cases, and emission on a single longitudinal wave mode is achieved at an appreciably higher excess over the threshold than in conventional semiconductor injection masers. The output power in the single--frequency mode is as high as 6.5 W (in the case of a composite cavity). An investigation is made of the possibilities for tuning the maser wavelength by measn of external elements within the range of the amplification band of the semiconductor. Five illustrations, bibliography of fifteen titles. 1/1

TOTAL AND THE STATE OF THE STAT

UDC 621.375.82

AKERMAN, D., YELISEYEV, P. G., KAYPER, A., MAN'KO, M. A., RAAB, Z.

"Methods for Selection of Types of Oscillations in Injection Semiconductor Lasers"

V sb. Kvant. elektronika (Quantum Electronics -- Collection of Works), No. 1, Moscow, 1971, pp 85-90 (from RZh-Fizika, No 7, Jul 71, Abstract No 7D1115)

Translation: To improve the spectral composition of radiation of an injection semiconductor laser, particularly to raise the yield power in a mode of a single type of oscillations, external elements having spectral selectivity were introduced into the resonator of the semiconductor laser. The following versions were studied experimentally: (a) a compound resonator: (b) a resonator with an interference filter; (c) two optically connected Fabry-Perot-type resonators of different lengths. The effect of the external selective element on the radiation spectrum of the laser was observed in all cases, and generation in one longitudinal type of oscillations was achieved for an essentially greater excess of the threshold than in ordinary injection semiconductor lasers. The output power in a single-frequency mode was up to 0.5 w (in the case of a composite resonator). Possibilities of detuning the wavelength of the laser with the aid of external elements was studied within the range of the amplification band of the semiconductor. 15 ref. Authors abstract.

1/1

USSR

UDO 621.382.2:546.19'681

andre !

KULISH, U.M., VASIL'YEV, A.P., VYATKIN, A.P., YELISEYEV, P.G., GEORMOGENOV, V.F.

"Effect Of Formation Conditions On The Electrical Properties Of Epitaxial P-N Junctions In Gallium Arsenide"

V sb. Arsenid galliya (Gallium Arsenide-Collection Of Works), Issue 3, Tomsk, Tomsk University, 1970, pp 152-162 (from RZh-Elektronika i yeye primeneniye, No 3, March 1971, Abstract No 3B384)

Translation: The electrical properties were investigated of p-n junctions in GaAs obtained by the method of liquid epitaxy. The electrical characteristics of p-n junctions obtained in a narrow temperature interval depend on the epitaxy temperature, which is explained by the corresponding dependences of the solidus curves of the corresponding quasi-binary systems. During subsequent heat treatment even short-duration annealings lead to a leveling of the electrical characteristics of "abrupt" p-n junctions and a disappearance of the dependence of their parameters on the epitaxy temperature. The crystallographic orientation of the substrate significantly influences the electrical and optical properties of laser junctions. Acceptor impurities exert various effects on the electrical and optical properties of epitaxial laser semiconductor diodes. 8 ref. Summary.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

жиликтыруу каралын жарын жарын каралын кара

1/2 038

UNCLASSIFIED

PROCESSING DATE--04DEC70

TITLE--TEMPERATURE DEPENDENCE OF THE OPTICAL GAIN IN INJECTION

SEMICONDUCTOR LASERS -U-AUTHOR--YELISEYEV, P.G.

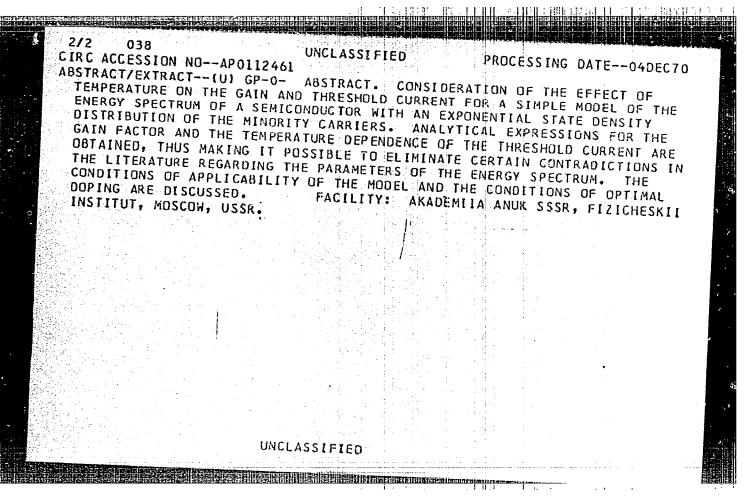
COUNTRY OF INFO--USSR

SOURCE-FIZIKA I TEKHNIKA POLUPROVODNIKOV, VOL. 4, JAN. 1970, P. 51-56

DATE PUBLISHED --- JAN70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--SEMICONDUCTOR LASER, TEMPERATURE DEPENDENCE, OPTIC PROPERTY, MINORITY CARRIER, ENERGY SPECTRUM


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/1467

STEP NO--UR/0449/70/004/000/0051/0056

CIRC ACCESSION NO--APO112461

UNCLASSIFIED



#### CIA-RDP86-00513R002203630003-2 "APPROVED FOR RELEASE: 09/01/2001

UDC 621.373:530.145.6 "Optimal Wave Guide Structure of an Injection Laser (Brief Report)" Kratk. soobshcheniya po fiz. (Brief Reports on Physics), 1970, No 4, pp 3-7 (from RZh-Radiotekhnika, No 8, Aug 70, Abstract No 8 D184) Translation: This article contains a presentation of the threshold current density as a function of thickness of the active layer obtained on the basis of theoretical research, and it is compared with experimental values obtained earlier. The threshold current is determined by a number of factors which

1/1

USSR

YELISEYEV, P. G.

depend on d.

**APPROVED FOR RELEASE: 09/01/2001** CIA-RDP86-00513R002203630003-2"

Heat Treatment

USSR

UDC: 669.293

YELISEYEV. S. A., SHPITSBERG, A. L., RYABYSHEVA, N. D., KALACHEV, I. B., and SAVINOV, A. T.

"Alloys with A Niobium Base for Elastic Sensing Elements"

Moscow, Tsvetnyye Metally, No 7, Jul 70, pp 61-62

Abstract: The purpose of the experiments described by this article was to develop alloys which can be used as clastic sensing elements at temperatures above 500-5500, the present-day limit. Taking up where an earlier article left off (Yeliseyev, S. A., et al, Tsvetnyve metally, No. 12, 1968) the authors processed two alloys consisting of various proportions of refractory elements Mo, Zr, Tl, Cr, C, Nb, and N+O. The proportions of the last two were the same in both cases, the proportion of Nb being standard. The alloys were given two smeltings in a vacuum electric-arc furnace with soluble electrodes, and the ingots were given hot and cold deformations for conversion into sheets 0.3 mm thick. Investigating the effect of thermal processing on these sheets, the authors found that they could get effective hardening by a vacuum procedure consisting of tempering in oil and subse-

•

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

ح. ∠JISSR

YELISEYEV, S. A., et al., Tavetnyye Metally, No 7, Jul 70, pp 61-62

quent aging. From their experiments, the authors concluded that the alloys can be toughened, with niobium as the basis, through vacuum processing with tempering in the 1400-1800° C range, and aging at 950-1050° C. Theyfound also that they can develop alloys that can work as elastic sensing elements at temperatures of 800°.

2/2

USSR

UDC 669.293.5.018.27:669.018.2(088.8)

YELISEYEV, S. A., SHPITSBERG, A. L., and RYABYSHEVA, N. D.

"Niobium-Base Alloy"

USSR Authors' Certificate No 263160, Cl. 40 b, 27/00, (C22c), filed 16 Jan 69, published 29 May 70 (from RZh-Metallurgiya, No 12, Dec 70, Abstract No 12 I867 by V. KISHENEVSKIY)

Translation: The Nb-base alloy with elevated resistance to relaxation up to 700° is intended to function as the elastic sensing element of instruments. The alloy contains the following (in %): Mo 2.5-10, Ti 1-4, 2r 1-4, C 0.02-0.4, Cr 0.1-5, and Y 0.01-0.1. In the hardened state (vacuum-hardening from 1500-1700° and aging at 900-1000°) the relaxation of stress on an 0.3-mm strip at 700° in 200 hours, given an initial stress of 44 kg/mm², is 6-7%. Mechanical properties in the hardened and soft state are given.

1/1

72 --

USSR

UDC 629.78:533.1

GURYLEV, V. G., YELISEYEY, S. N.

"The Theory of the "Pseudojump" in the Input Sector of a Channel"

Uch. zap. Tsentr. Aerogidrodinam. In-ta [Scientific Writings of Central Institute of Aerodynamics and Hydrodynamics], Vol 3, No 3, 1971, pp 25-35, (Translated from Referativnyy Zhurnal, Raketostroyeniye, No 9, 1972, Abstract No 9.41.152, from the Resume).

Translation: A flow model is studied for a "pseudojump," formed in a channel with parallel walls when a supersonic flow is decelerated. It is shown with various assumptions concerning the distribution of the M number through the cross section of the channel that as the static pressure increases over the length of the "pseudojump," the velocity profiles and total pressure profiles are smoothed. With large M numbers of the flow (M > 2), the flow at the beginning of the "pseudojump" separates, corresponding to the experimental data produced. 8 Figures; 4 Biblio. Refs.

1/1

121 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

ing i station in the few statements and the control of the statement of th

USSR

UDC 546.77.791

ustruseruserusennen innstrutselluselutikannskiruninkalutliklutesanir (inilair kuristusesani at klait ek isaluskaluskiri kiri

TO SUCCESSION OF THE CONTROL OF THE PROPERTY O

YELTSEYEV. S. S., GLUKHOV, I. A., and VOZHDAYEVA, YE. YE., Institute of Chemistry, Acad. Sc., Tadzhik SSR

"Ox, chlorides of Penta- and Tetravalent Uranium UO2CL and UOCl2"

Moscow, Zhurnal Neorganicheskoy Khimii, Vol 17, No 5, May 72, pp 1203-1208

Abstract: A simple method is reported for the synthesis of lower uranium oxychlorides UO2Cl and UOCl2 by heating the mixtures of UO3 and MoOCl3 to 220°C. In the process the exchange and oxidation-reduction reactions take place leading to the formation of the lower pentavalent uranium oxychloride UO2Cl, when equimolar quantities of UO3 and MoOCl3 are used. With excess MoOCl3 the process continues yielding the tetravalent uranium product UOCl2; reaction of UO2Cl with MoOCl3 taken in 1:1 ratio also yields the tetravalent product.

1/1

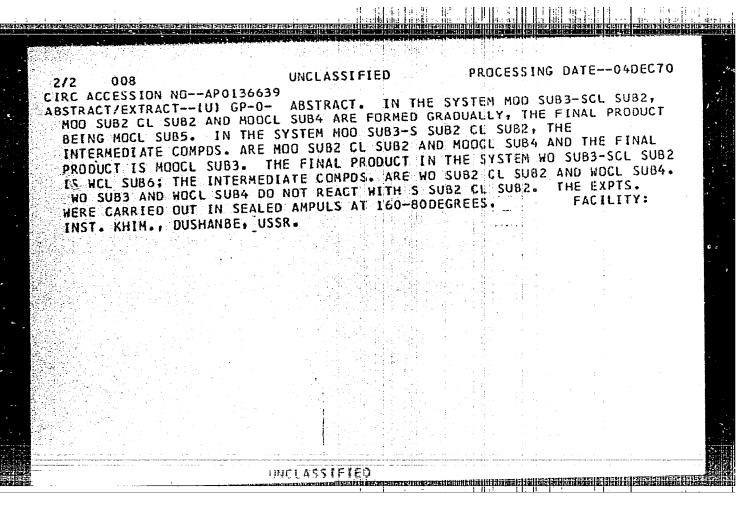
<del>- 29 =</del>

#### Radiation Chemistry

USSR

UDC 546.77.791

YELISEYEV. S. S., GLUKHOV, I. A., VOZHDAYEVA, YE. YE., Institute of Chemistry, Tadzhik Academy of Sciences


"Reaction Between MoOCl3 and UO2Cl2"

Dushanbe, Doklady Akademii Nauk Tadzhikskaya SSR, Vol 2, 1971, No 2, pp 36-39

Abstract: The authors had previously discovered that heating MoCl5 with U03 would produce MoO2Cl2 and U0Cl3, instead of the expected MoOCl3 and U02Cl2. To explain this, tests were run in sealed ampoules. It was concluded that (1) the first stage of the thermal reaction between U02Cl2 and MoOCl3 is one of oxidation-reduction (MoOCl3 + +U02Cl2 = MoO2Cl2 + U0Cl3), in which UVI is converted into UV, and Mo into MoVI; (2) action between U03 and MoCl5, leading to the formation of U0Cl3 and MoO2Cl2 as final products (U03 + MoCl5 = U0Cl3+ MoO2Cl2), takes place in two stages--first an exchange reaction (U03+MoCl5 = U02Cl2+ MoOCl3), then the oxidation reaction referred to.

1/1

PROCESSING DATE--04DEC70 UNCLASSIFIED 1/2 008 TITLE--REACTIONS IN THE TUNGSTEN TRIOXIDE, MOLYBDENUM TRIOXIDE, SULFUR MONOCHLORIDE, SULFUR DICHLORIDE, SYSTEMS -U-AUTHOR-(03)-GLUKHOV, I.A., YELISEYEV, S.S., PULATOV, M.S. COUNTRY OF INFO--USSR SOURCE--IZV. AKAD. NAUK TADZH. SSR, OTD. F.Z.-MAT. GEOL.-KHIN. NAUK 1970, ×(1), 29-32 DATE PUBLISHED-----70 SUBJECT AREAS -- CHEMISTRY TOPIC TAGS--SULFUR CHLORIDE, MOLYBDENUM DXIDE, TUNGSTEN OXIDE, CHEMICAL REACTION CONTROL HARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0465/70/000/001/0029/0032 PROXY REEL/FRAME--3007/1228 CIRC ACCESSION NO--APO136639 thirt assifiéd 



**1/2** 013

UNCLASSIFIED

PROCESSING DATE--13NOV70

TITLE--REACTIONS IN THE RHENIUM TRIOXIDE RHEGIUM PENTACHLORIDE SYSTEM - 11-

AUTHOR-(03)-GLUKHOV, I.A., YELISEYEV, S.S., YELMANOVA, N.A.

CCUNTRY OF INFO--USSR

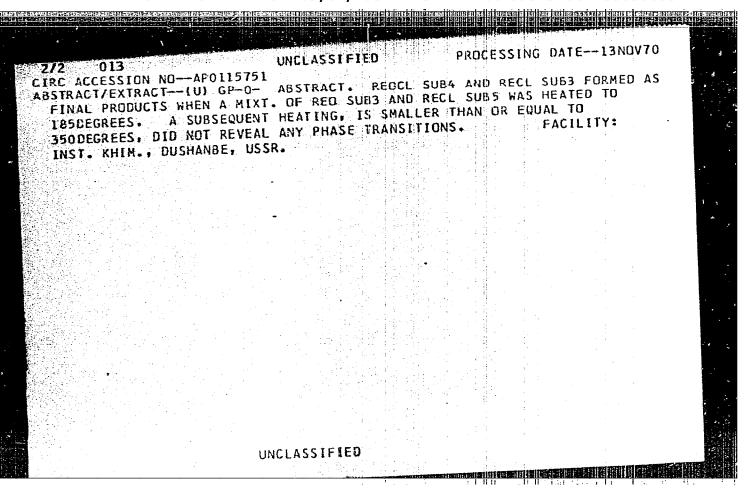
SOURCE-ZH. NEGRG. KHIM. 1970, 15(3), 814-16

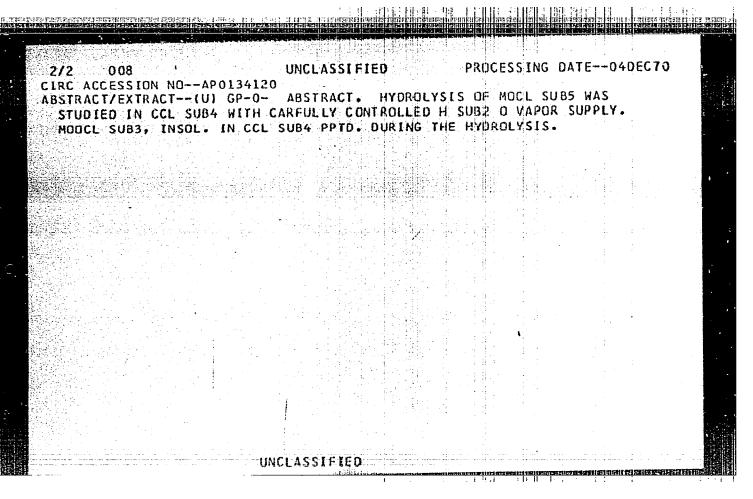
DATE PUBLISHED ----- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS-PHASE TRANSITION, RHENIUM COMPOUND, RHENIUM CHLORIDE, OXIDE

CONTROL MARKING-NO RESTRICTIONS


DOCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME--1994/1943


STEP NO--UR/0078/70/015/003/0814/0816

e ou crime equipment and entranticione de la minimization de la minimization de la minimization de la minimiza

CIRC ACCESSION NO--APOLI5751

UNCLASSIFIED





1/2 028 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--PROPERTIES OF COMPOUNDS FORMED BY MOOCL SUB4 WITH BENZENE AND

TOLUENE -U-

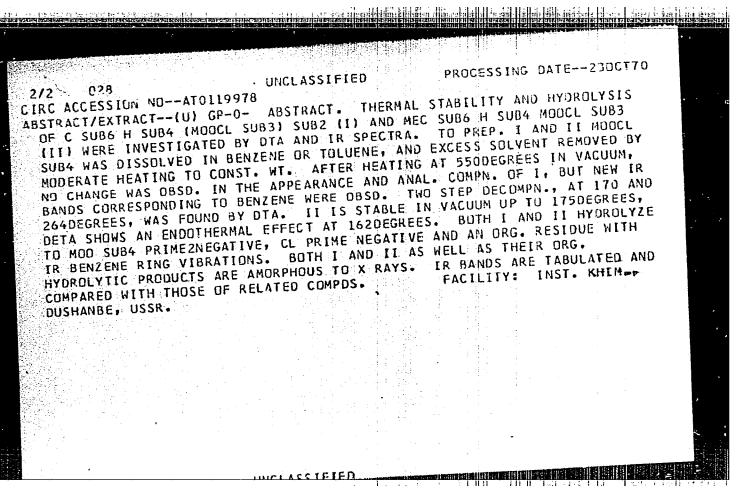
AUTHOR-(03)-GLUKHOV, I.A., YELISEYEV, S.S., NARZIKULOVA, R.M.

COUNTRY OF INFO--USSR

SOURCE-DOKL. AKAD. NAUK TADZH. SSR 1970, 43(1), 32-5

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY


TOPIC TAGS--THERMAL STABILITY, MOLYBDENUM COMPOUND, BENZENE, TOLUENE, THERMAL ANALYSIS, IR SPECTRUM

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/1124

STEP: NO--UR/0425/70/013/001/0032/0035

CIRC ACCESSION NO--ATO119978



1/2 014

TITLE--REACTION OF MOLYBDENUM OXYCHLORIDE WITH NATURAL TITANIUM COMPOUNDS

AUTHOR-104 LVC. 107

AUTHOR-(04)-YELISEYEV, S.S., GLUKOV, I.A., VOZHDAYEVA, YE.YE.,

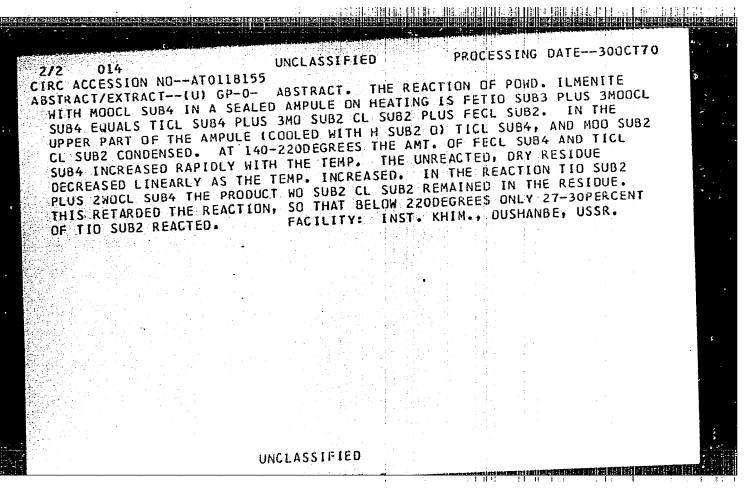
COUNTRY OF INFO-USSR

SOURCE--DOKL. AKAD. NAUK. TADZH. SSR, 1970, 13,2, 33-6

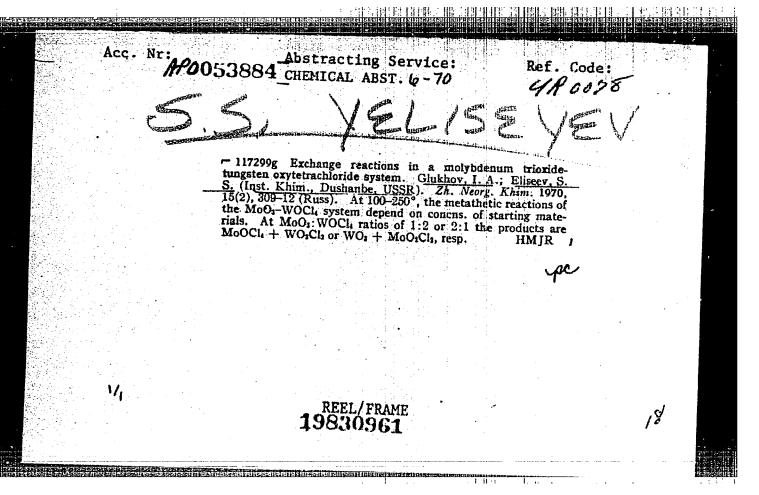
DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--MOLYBDENUM COMPOUND, CHLORIDE, TITANIUM COMPOUND, CHEMICAL


CENTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/0990


STEP NO--UR/0425/70/013/002/0033/0036

CIRC ACCESSION NO--ATO118155

UNCLASSIFIED



| Acc. Nr.                                                    |                                                                                                                                                                                                                             |                                      |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| #AP0053883                                                  | Abstracting Service: CHEMICAL ABST. 6/16                                                                                                                                                                                    | Ref. Code                            |
|                                                             | YELISEYEV                                                                                                                                                                                                                   | Ref. Code 4R 0018                    |
| - 117040                                                    |                                                                                                                                                                                                                             |                                      |
| 7/0221                                                      | Reaction of rhenium trioxide with relations and tungsten oxytetrachloride. (ev. S. S.; El'manova, N. A. (Inst. Khim. Neorg. Khim. 1970, 15(2), 305-8  ReO. reacts with MOCl. (M = Mo or W) to                               | Ciuknov.: I.                         |
| 150-200°,<br>Cl <sub>2</sub> and M<br>ReOCl <sub>4</sub> an | 2h. Neorg. Khim. 1970, 15(2), 305-8<br>ReO <sub>2</sub> reacts with MOCl <sub>2</sub> (M = Mo or W) to<br>dO <sub>2</sub> Cl <sub>2</sub> . On standing, ReO <sub>2</sub> Cl <sub>2</sub> dispropor<br>d ReO <sub>3</sub> . | Dushanbe,<br>(Russ), At<br>form Reo- |
|                                                             |                                                                                                                                                                                                                             | HMJR                                 |
|                                                             |                                                                                                                                                                                                                             |                                      |
| 1 화 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     |                                                                                                                                                                                                                             |                                      |
|                                                             |                                                                                                                                                                                                                             | PN.                                  |
|                                                             | 19830960                                                                                                                                                                                                                    | 18                                   |
|                                                             |                                                                                                                                                                                                                             |                                      |



| Acc. Nr.<br>#2005388                          | Abstracting Service: CHEMICAL ABST. 6/76                                                                                                                                                                                              | Ref. Code 48 0038                                                                                              |                                           |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                                               | YELI                                                                                                                                                                                                                                  | 52/EV 5                                                                                                        |                                           |
| $\frac{\tilde{\Lambda}_{ij}^{N}}{U_{ij}^{N}}$ | 17248q Reaction of rhenium trioxide with tetrachloride and tungsten oxytetrachloride.  Eliseev, S. S.; El'manova, N. A. (Inst. Khim                                                                                                   | Glukhov, I.<br>., Dushanbe,                                                                                    | Glamming .                                |
| Ĉi,                                           | SR). Zh. Neorg. Khim. 1970, 15(2), 305-8<br>-200°, ReO <sub>1</sub> reacts with MOCl. (M = Mo or W) t<br>and MO <sub>2</sub> Cl <sub>2</sub> . On standing, ReO <sub>2</sub> Cl <sub>2</sub> disproper<br>OCl. and ReO <sub>2</sub> . | n form D - O                                                                                                   |                                           |
|                                               |                                                                                                                                                                                                                                       |                                                                                                                |                                           |
|                                               |                                                                                                                                                                                                                                       |                                                                                                                |                                           |
|                                               | REEL/FRAME<br>19830960                                                                                                                                                                                                                | PN.                                                                                                            |                                           |
| TOTAL STREET                                  | Signi siilisissaanin aharakan kan ka                                                                                                                                                              | III-niibiilii 1810 Scalla Anii 1816 Anii | 5 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 |

USSR 14 ABROSIMOV, N. K., ALKHAZOV, D. G., DMITRIYEV, S. P., VELISHYEV, V. A. KAMINKER, D. M., KULIKOV, A. V., MIRONOV, Yu. T., MIKHEYEV, G. F., RYABOV, G. A., CHERNOV, N. N., SHALMANOV, V. I., KOMAR, Ye. G., MALY-SHEV, I. F., MONOSZON, I. A., PEREGUD, V. I., ROZHDESTVENSKIY, B. V., ROYFE, I. M., SEREDENKO, Ye. V., Physicotechnical Institute imeni A. F. Toffe. Academy of Sciences of the USSR. Lepingrad. Scientific Research UDC: 621.384.639 Ioffe, Academy of Sciences of the USSR, Leningrad, Scientific Research Institute of Electrophysical Equipment imeni D. V. Yefremov, Leningrad "The Leningrad Synchrocyclotron for a Proton Energy of 1 Gey" Leningrad, Zhurnal Tekhnicheskoy Fiziki, Vol 41, No 9, Sep 71, pp 1769-1775 Abstract: The paper describes the synchrocyclotron at the Physicotechnical Institute imeni A. F. Ioffe of the Academy of Sciences of the USSR for a proton energy of 1 GeV. Proton beam parameters as well as the characteristics of the main systems of the accelerator are presented. The beam channels are described, and the layout of the accelerator building is given. The installation has been in successful operation since 1970. Three tables, two figures, 1/1 - 83 -

USSR

UDC: 621.374.322:62-752.6

YELISEYEV, V. G., PIVOVAROY, A. N., AKIMOV, V. F.

"Stabilization of the Load of a Binary-Decimal Counter"

Mekhaniz. i Avtomatiz. Upr. Nauch-Proizv. Sb. [Mechanization and Automation of Control, Scientific-Production Collection], No 5, 1971, pp47-50 (translated No 3, 1972, Abstract No 3 A365 from the resume)

Translation: The distribution of load between the outputs of a counter connected to the inputs of a decoder is analyzed. Using a binary+decimal counter as an example, the authors show the influence of the sequence of code states of distribution of load and the possibility of improvement of the evenness of distribution of load by optimization of the connections between the counter and decoder, considering the code characteristics of each state (number) written in the

1/1

USSR

UDC 681.3

YELISEYEV, V. G., PIVOVAROV, A. N.

"Study of Tabular Method in Solution of Certain Problems of Residual Class

Probl. Tekhn. Elektrodinamiki, [Problems of Engineering Electrodynamics-Collection of Works], No. 24, Kiev, Nauk. Dumka Press, 1970, pp 178-180, No. 5V607, by the authors).

Translation: Problems are studied for decoding the states of a system for coding pulses, represented by counters with numbers of positions which are mutually simple in pairs. Due to the possibility of performing arithmetic operations digit by digit and the absence of number carrying, parallel ring counters have significantly higher speed than series binary and decimal the states of parallel ring counters and the method of its composition is

1/1

USSR

WERE PROPERTY OF THE PROPERTY

VDC 621.385

YELISEYEV. V.I., and PRESNYAKOV, I.N.

"Control Device for TBPM 16/1200 Using Semiconductor Devices"

Vestn. Khar'kov. politekhn. in-ta (Herald of Khar'kov Polytechnic Institute), 1971, No 54, pp 82-85 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 1, Jan 72, Abstract No 1A446 by B. U.)

Translation: Signals generated in the TBPM 16/1200 synchro generator go to a control pulse shaping unit, in which pulses are shaped according to amplitude, shape, and duration and then go to a decoder. On the other hand, a potential level shaping unit sends to the decoder voltages fixed in value corresponding to the state of the dynamic flip-flops in the counter decade. The decoder generates a pulse coinciding in time with a certain digit on the TBPM 16/1200 digital drum, located opposite the printing hammer. This pulse triggers the current pulse shaping circuit in the printing unit. The current pulse, going to a certain electromagnet of the hammer, causes its actuation. A pulse is formed to run the paper at the moment when there is no printing. This pulse goes to the paper transport unit, where a current pulse is formed, causing actuation of the TBPM 16/1200 step mechanism. 3 illustrations. Bibliography with 3 titles.

1/1

UDC 621.374

YELISEYEV, V. K., 'LITVINCHUK, N. I.

THE PROPERTY OF THE PROPERTY O

"Problems of Accuracy and Reliability Arising During Technical Planning and Design of Digital Automata without Memory"

Kiev, Kibernetika i Vychislitel'naya Tekhnika, Tochnost' i Nadezhnost' Kiberneticheskikh Sistem, No 10, 1971, pp 58-64

Abstract: Problems connected with considering the characteristics of real logical elements when planning and designing combination circuits are classified. A general approach to the solution of these problems is proposed on the basis of the theory of statistical solutions. A real combination circuit is interpreted as a digitalized analog device for this purpose. A mathematical model of a real digital automaton without memory, the problems of investigating the mathematical model of the real automaton without memory, problems of investigating the accuracy and reliability of a real digital automaton without memory from the point of view of the general theory of statistical solutions, the problem of optimization of efficiency with respect to accuracy and reliability indexes and the initial prerequisites required to solve the investigated problems of accuracy and reliability are discussed. The problems of investigating the mathematical model include 1) investigation of systematic, nonrandom distortions of physical signals in a real automaton; 2) study of the 1/2

USSR

YELISEYEV, V. K., Kibernetika i Vychislitel'naya Tekhnika, Tochnost' i Nadezhnost' Kiberneticheskikh Sistem, No 10, 1971, pp 58-64

behavior of a real automaton with random nature of the input signals; 3) analysis of the behavior of a real automaton when the parameters of the parts of its logical elements vary randomly; 4) study of the behavior of an automaton in time in connection with the presence of random irreversible failures of the parts of the elements; 5) analysis of the functioning efficiency; 6) optimization of the efficiency of functioning of automata. The proposed procedure can be used as a basis for constructing an algorithm for machine design of combination circuits. The presented arguments were taken into account when developing the simulation algorithm for designing combination integral circuits made of MOS-transistors [N. I. Litvinchuk, Tr. seminara Konstruirovaniye tekhnicheskikh sredstv kibernetiki, No 1, Publishing House of the Cybernetics Institute of the Ukrainian SSR Academy of Sciences, Kiev, 1971].

2/2

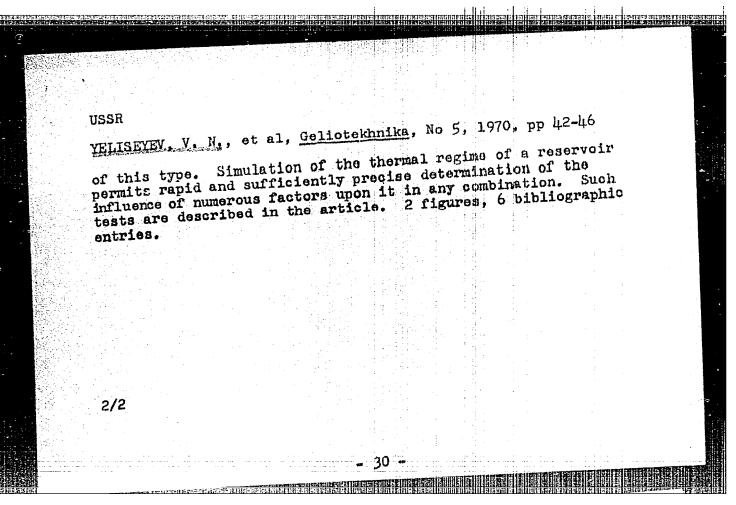
2 -

# Heat, Combustion, Detonation

UDC 662.997

**印尼切削员可能的** 

YELTSEYEV. V. N., USMANOV, YU. U., Physicotechnical Institute, USSR


Academy of Sciences, Uzbek SSR imeni S. V. Starodubtsev

"Some Problems Concerning Simulation of the Thermal Regime of a Solar Reservoir"

Tashkent, Geliotekhnika, No 5, 1970, pp 42-46

Abstract: For regions with a large number of sunny days in the year, a cheap method of converting solar energy into thermal energy is the use of special reservoirs with an artificial density gradient with respect to depth. This density gradient is effected by means of several horizontal layers, in which the concentration of salt increases with depth; when the reservoir is heated by sunshine, each successively deeper layer becomes hotter than the one above it. In an experiment conducted with notter than the one above it. 25 x 5 meters, a miximum temperature of 910 C was attained at a depth of 80 cm. ascertain the economic justifiability of using this heat-storage mathod, experiments were conducted on small models of a reservoir

1/2

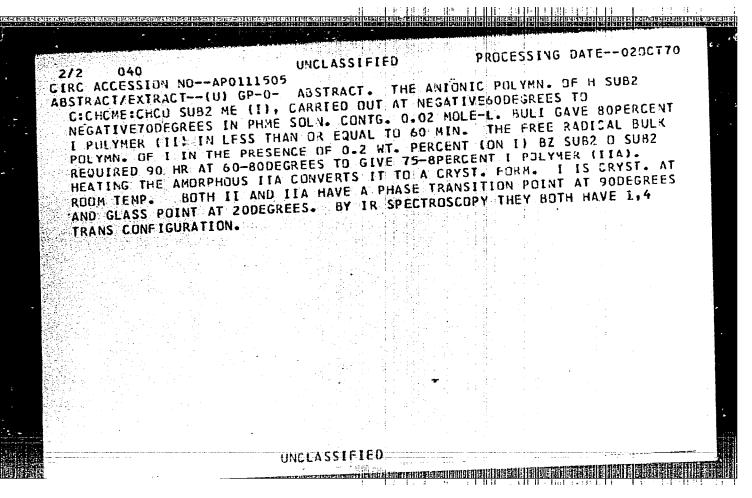


532.526.2

USSR

YELISEYEV, V. I., Dnepropetrovsk

"On the Theory of a Boundary Layer With Suddenly Changing Boundary Conditions"


Moscow, Izv. AN SSSR: Mekhanika Zhidkosti i Gaza, No 4, Jul/Aug 72, pp 58-64

Abstract: A sudden change is boundary conditions leads to violation of the basic hypotheses of bound ry layer theory. However, this violation shows up in a region whose characteristic dimension is commensurate with the thickness of the boundary layer, and this region influences the main flow only when quantities which vanish to the second order are taken into consideration. This makes it possible to examine problems with local singularities within the framework of boundary layer theory, but all the same requires development of other methods of solution based on splicing solutions found in adjacent regions. In this paper, the method of spliceable asymptotic expansions (Van Dyke, M., "Perturbation Methods in Pluid Mechanics", Moscow, Mir Publishers, 1967) is used to construct solutions in the boundary layer for potential flow U=cxm.

1/1

-19

PROCESSING DATE--020CT70 UNCLASSIFIED TITLE--SYNTHESIS, STRUCTURE, AND BEHAVIOR OF POLYMERS OF THE METHYL ISCPRENECARBOXYLATE OBTAINED BY ANIONIC AND RADICAL POLYMERIZATION -U-AUTHOR-(05)-ARBUZDVA, I.A., YEFREMOVA, V.N., YELISEYEVALA G., VIKITIV, V.N. SIBURDVICH. A.V. COUNTRY OF INFO-USSR SOURCE--VYSUKUMOL. SDEDIN., SER. A 1970, 12(3), 697-704 DATE PUBLISHED ---- 70 SUBJECT AREAS--CHEMISTRY, HATERIALS TOPIC TAGS--ISOPRENE, CARBOXYLIC ACID ESTER, POLYMERIZATION, LOA TEMPERATURE EFFECT, DEGANOLITHIUM COMPOUND, POLYMER STRUCTURE, PHASE TRANSITION. IR SPECTRUM CONTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NU--UR/0459/70/012/003/0697/0704 PROXY REEL/FRAME--1992/0311 CIRC ACCESSION NO--APOILISOS UNCLASSIFIED 



| ni na duni perdapakan mengan persasa kandalah kebagai kandalah kebagai kebagai kebanti kebagai<br>Kebagai kebagai kebaga |                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNCLA<br>LILEHEACTICN OF PENTACHLOROPYRI<br>LILEIVASHCHENKE, YA.N., NOŚHOW<br>LITHUFIVASHCHENKE, YA.N., NOŚHOW                                                                                                   | PRECESSING DATE03JUL7C  PRECESSING DATE03JUL7C  DESSIFIED  PRECESSING DATE03JUL7C  PRECESSING DATE03JUL7C  PRECESSING DATE03JUL7C  PRECESSING DATE03JUL7C  A.K.  PRECESSING DATE03JUL7C  PRECESSING DATE03JUL7C  A.K.  PRECESSING DATE03JUL7C |
| CLATEY OF INFO-LSSE SELECE-K-IM. GETEFOTSIKL. SCEDIN BATE PUBLISHED                                                                                                                                              |                                                                                                                                                                                                                                               |
| SUBJECT AREASCHEMISTRY TOPIC TEGSCHLCHINATEC CRGENIC CCMFCUNC, NICCTINIC ACID, CHEM                                                                                                                              | COMPCUNC. PYRICINE, ORGANGMAGNESIUM ICAL SYNTHESIS                                                                                                                                                                                            |
| CENTREL MARKINGNE RESTRICTIONS                                                                                                                                                                                   | 3                                                                                                                                                                                                                                             |
| BCCUMENT CLASSUNCLASSIFIED PRCXY REEL/FRAME1980/1700                                                                                                                                                             | STEP NCUR/0409/70/000/001/0058/0059                                                                                                                                                                                                           |
| 100010787                                                                                                                                                                                                        | SSIFIED                                                                                                                                                                                                                                       |

Acc. Nr: Abstracting Service: APO049782 CHEMICAL ABST. 5-70

Ref. Code: UR0409

sium compounds. Ivashchenko, Ya. N.; Moshchitskii, S. D.; Bliseeva, A. K. (Inst. Org. Khim., Kiev, USSR). Khim. Geterotsiki. Soedin. 1970. (1), 58-9 (Russ). A soln. of 17.5 g pentachloropyridine (I) in 100 ml mixt. of abs. tetrahydrofuran and Et<sub>1</sub>O was added dropwise to MeMgI (from 2.4 g Mg and 14 g MeI) in Et<sub>2</sub>O and the mixt, heated 2 hr at 50-60° to give 35% 2,2',3,3',5,5',6,6'-octachloro-4.4'-bipyridine, m. 247-8° (EtOH), and 4-methyl-2,3,5,6-tetrachloropyridine (II, R = Me) (IIa) IIa was also obtained, by gradually heating 2.75 g 2,3,5,6-tetrachloropyridine-4-acetic acid 1 hr at 200°, in 95% yield. Similarly prepd. were II (R, b.p./mm, m.p., and % yield given): Me,

90°/0.02, 89-90° (BtOH + H<sub>2</sub>O), 25; Et, 93°/0.02, 67-8° (AcOH + H<sub>2</sub>O), 85; Pr, 94-5°/0.02, —, 62; Bu, 100°/0.07, —, 68; PhCH<sub>2</sub>, 165°/0.15, 105-7° (EtOH), 42. To 1.15 g Ha in 30 ml H<sub>2</sub>O at 80-90° was gradually added 1.5 g KMnO<sub>3</sub> during 30 hr to give 0.2 g 2,3,5,6-tetrachloroisonicotinic acid, m. 220-2° (H<sub>1</sub>O). S. K. Banerjee —

REEL/FRAME 19801700 de 7

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

Acc. Nr: AP0047354

Ref. Code: UR0589

PRIMARY SOURCE:

Vestnik Khirurgii/imeni I. I. Grekova, 1970,

Vol 104, Nr / , pp 44-48

LATE RESULTS AFTER CONSTRUCTION OF VASCULAR ANASTOMOSES
IN PATIENTS WITH PORTAL HYPERTENSION

Yeliseyeva, G. P.

Late results were studied in 39 patients with portal hypertension, in whom vascular anastomoses were constructed. The postoperative terms were from 1 to 11 years. The best and reliable means of prophylaxis and treatment of massive hemorrhages from esophageal varices were direct portacaval anastomoses. In 25 patients with this type of anastomosis there were no cases of recurrent hemorrhage in the late postoperative period. However, encephalopathy noted in 8 patients was not an infrequent complication, it being noted more frequently after an end-to-side anastomosis. In patients after splenorenal anastomosis encephalopathy was not observed, but in 3 of 10 patients the recurrent hemorrhage was noted. Patients with vascular anastomosis in hepatic cirrhosis could not be considered absolutely sound, since functional hepatic tests show no tendency to improvement especially protein and prothrombin—formation functions. After vascular anastomoses patients need dispensary control and supporting therapeutic measures.

1//

REEL/FRAME

19790880

8th

2\_

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

Acc. Nr: APO051953

Ref. Code: 118 0219

erereruntari-misa kurantai janata interantemining malahari interantal kuli metangun menarahari menereri menere

PRIMARY SOURCE:

Byulleten' Eksperimental'noy Biologii i

Meditsiny, 1970/Vol 69, Nr 2 , pp 63-66

IMMUNE RESPONSE OF THE REGIONAL LYMPH NODE CELLS AGAINST THE BACKGROUND OF THE EFFECT PRODUCED BY 5-OXYTRYPTOPHAN AND 3,4-DIOXYPHENYLALANINE

L. V. Devoyno, L. S. Yeliseveva (Korovina)

Institute of Physiology of the Academy of Sciences of the USSR (Novosibirsk)

Tests conducted on mice revealed that multiple daily administration of 50 mg/kg of 5-oxytryptophan (5-HTP) by the intraperitoneal route led to the diminution of cells producing antibodies to the bovine serumal albumin. Analogous effect was also achieved with a single introduction of this substance in the same dose, deposited at the site of its administration. An increase of the dose up to 100 mg/kg reduced not only the number of producing cells, but also brought down the amount of the antigen sorbed by the cell. Introduction of 3,4-dioxyphenylalanine was followed by stimulation of the immunogenic process, finding its expression in the rise of the producing cell number. This effect is age-qualified.

REEL/FRAME 19820440

2 pc

distribution de l'annuire surverse sus divisione

USSR

UDC 632.952.543

MAKAROVA, S. V., and YELISEYEVA, M. A., All Union Scientific Research Institute of Chemical Plant Protective Agents

"Analysis of Fentiuram"

Koscow, Khimiya, v Sel'skom Khozyaystve, Vol 10, No 9 (119), 1973, pp 40-42

Abstract: An analytical method has been developed for determination of the content of tetrazethylthiuran disulfide / TNTD/, for the gamma isomer of HCH / hexachlorocyclohexane/ and for copper 2,4,5-trichloropeholate / TCP/ in the combined fungicide for grain — fentiuman. THTD is determined after decomposition of fentiuman with phosphoric acid in presence of ethylenediaminotetrazetic acid tetranitrate to CS, which is then absorbed with methanolic KCH solution and the xanthogenate formed is titrated with a solution of iodine. The gamma isomer of HCH is determined by the hydrolyzable chlorine after preliminary extraction with petroleum ether. The TCP content is calculated from the copper levels obtained iodometrically after mineralization of the preparation and digestion of the combusted residue.

1/1

1/2 039

UNCLASSIFIED

PRUCESSING DATE--020CT70

TITLE--CHELATE ADSTRACTS BASED ON AMINOPOLYSTYRENE AND RESURCINOL AZO

DERIVATIVES -U-

AUTHOR-(03)-YEETSFYEVA, O.P., SAVVIN, S.B., GRACHEVA, R.F.

COUNTRY OF INFO--USSR

SOURCE--ZH. ANAL. KHIM. 1970, 25111 45-8

DATE PUBLISHED ----- 70

SUBJECT AREAS-CHEMISTRY, EARTH SCIENCES AND OCFANOGRAPHY

TOPIC TAGS--RESORCINGL, CHELATE COMPOUND, ADSORPTION, FORMALDEHYDE, ORGANIC NITRO COMPOUND, AMINE, STYRENE, POLYMER, COPPER, NICHTUM, URANIUM, LANTHANUM

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRANE--1992/0300

STEP NO--UR/0075/70/025/001/0045/0048

CIRC ACCESSION NO--APOILLA94

UNGLASSIFIED

6.(2.NETAARSENATUPHENYLAZOIRESONCINGL. OR 4.(2.PVIRIOVIAZOI. RESTRCINTL GAVE IV (R IS H. PH. 2.HYDROXYPHENYL. 2.METARSENATUPHENYL. OR 2.PYRIDYL, RESP.). ALL IV CHELATE METALS AND CAN BE USED AS THE SELECTIVE ADSORBENTS FOR CU. U. NB. AND LA. THE ADSORPTION OF THESE METALS VARIES WITH THE PH IN A DIFFERENT NANNER FOR ALL IV. IV (R EQUALS 2.PYRIDYL) ADSORBS 90PERCENT CU AND NB FROM N HCL WHILE UD SUBZ AND LA ARE NOT ADSORBED; IV (R EQUALS H) ADSORBS SIMILAR TO 100PERCENT NB AT PH I WHILE CU IS NOT ADSORBED.

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--20NOV70 1/2 029

TITLE-POLAROGRAPHIC STUDY OF THE ENERGY METABOLISM OF DOG LUNG

MITCCHONGRIA IN THE COLD -U-AUTHOR-104)-YELISEYEVA, S.V., KOTOVA, YE.N., RABINOVICH, YU.YA.,

CHECHULIN, A.S.

CCUNTRY OF INFC--LSSR

SGURCE--- COKL. AKAD. NAUK SSSR 1970, 191(3). 7C5-7

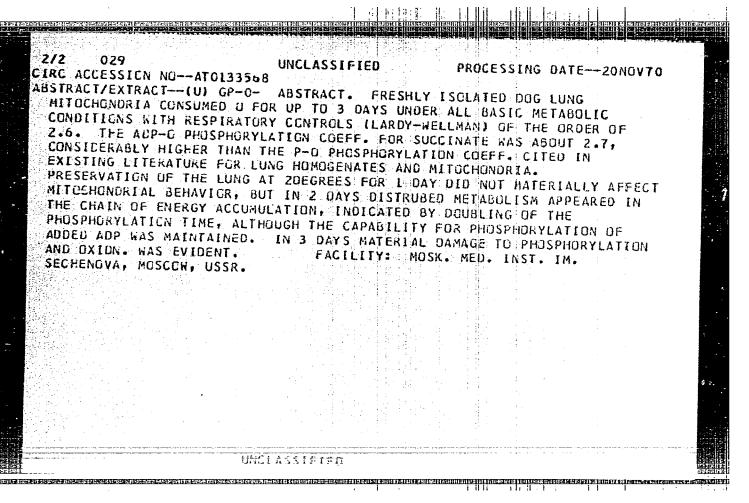
DATE PUBLISHED----70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--PELARCGRAPHY, GOG, LUNG, MITOCHONDRION, METAGOLISM, RESPIRATION, PHOSPHORYLATION

CENTROL MARKING-NO RESTRICTIONS

OCCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME--3005/1663


STEP NO--UR/0020/70/191/003/0705/0707

CIRC ACCESSION NO--ATOL33568

UNCLASSIFIED

PROCESSING DATE--OZOCTTO

CIRC ACCESSION NO-APOLIE494 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. THE NITRATION OF POLYSTYRENE (MOL.



Acc. Nr: AP0052066

Ref. Code: UP1396

PRIMARY SOURCE:

Patologicheskaya Fiziologiya i

Eksperimental naya Terapiya, 1970, Vol 14,

Nr / , pp29-33

OXYGEN TENSION IN THE WALL OF THE STOMACH, SMALL AND LARGE INTESTINE UNDER NORMAL AND PATHOLOGICAL CONDITIONS

A. P. Krendal, I. M. Epshleyn, S. V. Yelisegeva

A total of 36 acute experiments were carried out on cats. Using a copper amalgamated electrode  $pO_2$  was determined in the wall of the stomach, small and large intestine. The highest initial  $pO_2$  level was found in the wall of the small intestine, and the lowest—in the large intestine, the stomach occupying an intermediary position. Under pathological conditions (hyper- and hypoxia, hypervolemia, ischemia) alteration of  $pO_2$  level in the wall of the small intestine considerably exceeded these changes in the wall of the stomach and large intestine. The fall of  $pO_2$  caused by blood letting and conditions of oxygen sypply of the stomach and intestine are apparently conditioned by peculiarities attending the blood supply and the metabolism of these organs.

44 2

**APPROVED FOR RELEASE: 09/01/2001** CIA-RDP86-00513R002203630003-2"

#### Epidemiology

USSR

UDG 616.621.5-036.33+576.858.75

IL'INA, T. S., DZHALALOV, KH. D., VARSANOVA, YE. TA., YELISEYEVA, T. S., SEMIKHANIDU, L. G., and KIRGIZOVA, T. M., Laboratory of Virology, Scientific Studies Institute of Epidemiology, Microfiology, and Infectious Diseases

"Epidemological Characteristic of Three Epidemics of Flu Produced by the  ${\rm A_2}$  Hong Kong Virus"

Tashkent, Meditainskiy Zhurnal Uzbekistana, No 8, Aug 73, pp 68-73

Abstract: Since the appearance of the A<sub>2</sub> Hong Kong flu virus in January, 1969, in Tashkent, there have been three epidemics. Although the epidemics were similar in a general way, each exhibited particular features of the spread of infection, age of those infected, change with time and season of the year, and immunological characteristics toward various serums. The studies indicated that the cycles of flu produced by the A<sub>2</sub> Hong Kong-68 flu virus

showed a tendency toward a gradual damping of the epidemic process, which is expressed in a decrease in the intensity of subsequent epidemics, in the reduction in the severity of the disease, in a decrease in infectiousness among adults, but an increase among young children, and in a general increase in immunity.

1/2 038

UNCLASSIFIED PROCESSING DATE--230CT70

FORMING PROPERTIES OF ACRYLIC POLYMERS -UAUTHOR-(02)-GERBER, V.D., YELISEYEVA, V.I.

COUNTRY OF INFO--USSR

SOURCE-LAKOKRASOCH., MATER. IKH PRIMEN. 1970, (1), 4-6

DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS, CHEMISTRY

TOPIC TAGS--ACRYLATE, PLASTIC FILM, ACRYAMIDE, ACRYLONITRILE, METHACRYLIC ACID, POLYMERIZATION, MOISTURE MEASUREMENT, MAGNESIUM, METAL COATING,

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--1997/0688

STEP NO--UR/0303/70/000/001/0004/0006

CIRC ACCESSION NO--APOL19596

UNCLASSIFIED.

038 CIRC ACCESSION NO--APO119596 UNCLASSIFIED PROCESSING DATE--230CT70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE COPOLYMN. OF BU METHACRYLATE WITH METHACRYLAMIDE, METHYLOLMETHACRYLAMIDE (I), ACRYLONITRILE, GLYCIDYL METHACRYLATE (11), DIMETHYLAMINOETHYL METHACRYLATE (111), OR METHACRYLIC ACID (IV) IN MEDH-PHME MIXT. CONTG. BZ SUB2 O SUB2 OR AZOBISISOBUTYRONITRILE AT 70DEGREES GAVE POLYMERS WHICH HAD PRACTICALLY IDENTICAL MAIN CHAINS, BUT DIFFERENT SIDE GROUPS. ALL OF THE SIDE GROUPS EXCEPT ON INCREASED THE TENSILE STRENGTH AT BREAK OF THE POLYMER GILMS. MED, AMIDE, CO SUB2 H, AND GLYCIDYL GROUPS INCREASED THE ADHESION OF THESE POLYMERS TO METALS. THE PRESENCE OF 5 MOLE PERCENT III IN THE POLYMER INCREASED MOISTURE ADSORPTION FROM THE AIR AT 98PERCENT RELATIVE HUMIDITY 60 FOLD (FROM 0.1 TO 6PERCENT); 5PERCENT I INCREASED MOISTURE ADSORPTION I FOLD. THE CORROSION OF MG COATED WITH THE POLYMERS DECREASED IN THE FOLLOWING SUBSTITUENT SERIES: II SMALLER THAN IV SMALLER THAN I SMALLER THAN III. UNCLASSIFIED 

USSR

VDC: 621.315.592

VINOGRADOVA, M. N., DRABKIN, I. A., YELISEYEVA, Yu. Ya., and NEL'SON, I. V.

"Optical Characteristics of p-Type Pb<sub>1-x</sub>Mn<sub>x</sub>Te Solid Solutions"

Leningrad, Fizika i tekhnika poluprovodnikov, No 8, 1972, pp 1478-

Abstract: The work described by this paper is the investigation of infrared reflection and absorption spectra in solid solutions of Pb1-xMnxTe, with the purpose of explaining the energy structure of these alloys. The reflection spectra were measured with specimens of up to 9% at 300° K, and such spectra are plotted for alloys in which x = 0.03, 0.06, 0.09 with identical Hall concentrations. The absorption spectra were obtained for polycrystalline specimens of Pb0.95Mn0.05Te and Pb0.9Mn0.1Te and are reproduced as well. It to a change in the respective positions of light and heavy hole substantially from those of PbTe.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

USSR

VDC 539.3:534.1

BOLOTIN, V. V., YELISHAKOV, I. B., Moscow

"Random Vibrations of Elastic Shells Containing an Acoustic Hedium"

Moscow, Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela, No 5, 1971, pp

Abstract: Previously [V. V. Bolotin, Inzh. zh. MTT, No 1, 1968], a study was made of the problem of determining the sound pressure field inside shells undergoing random vibrations. A method was proposed for calculating the correlation functions and the spectral pressure densities in an acoustic environment and also the noise level inside a shell. A significant restriction was introduced in that the surface functions corresponding to the forms of the natural vibrations of the acoustic medium were assumed to coincide with the forms of the natural vibratized to a broader class of shells. In the present paper, the method is general-simultaneously — the functions for the shell and for the acoustic medium. Smooth and reinforced circular cylindrical shells with sound insulation are presented as an example. The calculation is performed as applied to vibrations in a pulsating pressure field from a turbulent boundary layer.

1/1

- 137 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

USSR

YELISHAKOV, I. B., KHROMATOV, V. YE., Moscow

"Oscillations of Panels in a Supersonic Flow in the Presence of Random Effects"

Moscow, Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela, No 1, January-February 1971, pp 54-58

Abstract: This article contains a study of the effect of the velocity of a head-on supersonic flow on the statistical characteristics of the stress-strain state of a cylindrical panel. The external loads are made up of pressure pulsations in a field of random forces which are considered random time-space functions and a pressure perturbation which depends on the deformations of the panel. The results of a numerical analysis are presented for a number of statistical characteristics of normal displacements of the panel as a function of the Mach number. The effect of the perturbed pressure and mutual correlations of the generalized coordinates is estimated. The method described by Bolotin in "Stochastic Boundary Problems in Plate and Shell Theory" --- the method of canonical expansions -- was used to solve the equations of the stochastic problem.

A numerical example is described and the results of calculating the statistical characteristics on the BESM-4 computer are presented in the form 1/2

- 49 -



YELISHAKOV, I. B., et al., Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela, No 1, January-February 1971, pp 54-58

of graphs. From the results of these calculations it appears that when considering the regular pressure component the vibration level of the channel is appreciably lower than the level calculated without considering this component. Several possible causes are suggested to explain the drop in vibration level.

2/2

USSR

UDC 621,396.6.049.75.019.3

YELISOV, L. N., KOZLOV, E. S., SERGEYEV, N. P.

"Utilizing Analog Equipment to Estimate the Reliability of Printed Connections"

V sb. Metody mat. i fiz. modelir. i optimiz. parameterov radioelektron. apparatury. No 1 (Methods of Nathematical and Physical Simulation and Optimization of the Parameters of Radio Electronic Equipment. No 2 — collection of works), Moscow, 1972, pp 123-124 (from RZh-Radiotekhnika, No 7, Jul 72, Abstract No 7V324)

Translation: The problem of estimating the reliability of printed joints is solved as a problem of elasticity theory. The biharmonic fourth-order equation describing the state of equilibrium of the printed structural element is derived which can be solved by electronic simulation. The solution technique using a vibration test unit with vibration sensors is described in general features the signals from which goes to a computer with modules for separating the harmonic component and envelope, an averaging module and a ratio module. The bibliography has 2 entries.

1/1

- 70 -

SAGENTERATE EN LEGATE EN LA COMETA EN LA COMETA EN LA COMETA DE LA COMETA EN LA COMETA DE LA COMETA DE LA COME ESTADO EN LOS COMETA EN LA COMET USSR

VDC 51

GORSTKO, A. B., YELISTRATOV, A. D., and KLYUYEV, V. N.

HILLER BERGER SIDT HESSEN

"On Certain Optimization Problems Involving Macroeconomic Models"

V sb. Mat. analiz ekon. modeley. Ch. 3 (Mathematical Analysis of Economic Models. Part 3 -- Collection of Works), Novosibirsk, 1972, pp 34-50 (from RZh-Matematika, No 3, Mar 73, Abstract No 3V577 from the introduction)

Translation: Suppose that planning takes place during an infinite period. Function f(c(t)) at each moment of time t characterizes the effect of consumption c(t). On the set of functions c(t) let us define the functional

 $\Phi(c) = \int_{0}^{\infty} \int (c(s)) e^{\alpha s} ds,$ 

where  $\alpha < 0$  is the discount coefficient. Function c(t) must satisfy certain conditions. A number of extremal problems arise in accordance with these conditions and the assumptions made.

1/1

STANSTER EN MOTERANT MANTEN DE LA COMPANIA DE LA C STANSTER EN MOTERANT MANTEN DE LA COMPANIA DE LA C

USSR

WDC: 577.1:615.779

PAVLOVA, L. P., and YELISUYSKAYA, R. V.

"Nervous Function in Animals Chronically Poisoned with Metadlisopropylbenzene"

Tr. Azerb. NII gigiyeny truda i profzabolevaniy (Transactions of the Azerbaydzhan Research Institute of Industrial Hygiene and Occupational Diseases), 1970, No 5, pp 176-179 (from RZh-Biologicheskaya Khimiya, No 10, May 71, Abstract No 10 F1683 by M. Shuster)

Translation: Mice and rabbits were poisoned with the fumes of metadiiso-propylbenzyne (I) for 5 hours daily for 5 months 5 times a week (concentration of I l and 0.2 mg/L). Straight-line movements (after radial acceleration), muscular strength (MS), and duration of enforced swiming were determined in the animals. The aretylcholine (II) concentration and cholinesterase activity were determined in the animals blood. The rate of restoration of straight-line movements and MS decreased markedly after poisoning with I. After chronic poisoning with I there was a general tendency for cholinesterase activity to decrease. The concentration of II rose during the first few months of poisoning but began to fall beginning with the 3rd month.

-531---

UDC: 621.892:621.90.025

USSR

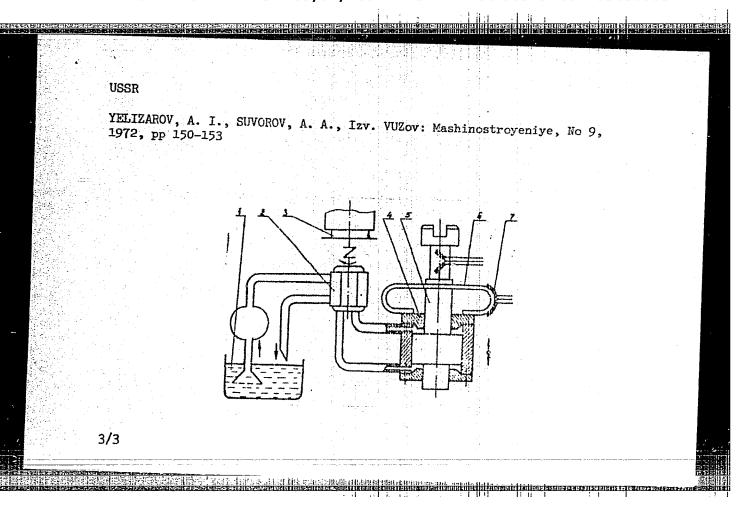
YELIZAROV, A. I., Engineer, SUVOROV, A. A., Candidate of Technical Sciences, Senior Instructor"

"Cutting Small-Diameter Threads With Low-Frequency Vibrations"

Moscow, Izv. VUZov: Mashinostroyeniye, No 9, 1972, pp 150-153

Abstract: The paper describes an experimental vibration stand designed and built at the Moscow Higher Technical Academy imeni N. E. Bauman for studying the effect of axial audio frequency vibrations (100-800 Hz) on the process of thread cutting. The installation is based on the 2N118 the process of thread cutting. The installation is based on the 2N118 vertical drill. The basic parts are an oil pump station, a slide-valve unit, and a hydraulic amplifier. These elements are shown in the diagram. The installation operates as follows. Oil is pumped under pressure from station 1 to slide-valve unit 2 with rotating valve. The valve is turned by DC motor 3 and directs the oil alternately into the upper and lower cavities of cylinder 4 while simultaneously connecting the opposite cavity to waste. The valve is made in such a way that in one turn there are 20 vibrations of piston 5 whose upper section holds the work-piece. The frequency of vibrations of this piston is controlled by vary-

1/3


USSR

YELIZAROV, A. I., SUVOROV, A. A., Izv. VUZov: Mashinostroyeniye, No 9, 1972, pp 150-153

ing the rpm of the DC motor. Corresponding to every 300 rpm of the motor is another 100 Hz of workpiece vibration. Leaf spring 6 with its upper section securely fastened to the piston is installed on the hydraulic cylinder to fix the piston of the hydraulic amplifier in the middle position and to keep it from turning. Foil strain-gauge resistors 7 are cemented on the neck of the piston and on the spring to register the torque and the vibration amplitude. Curves are given showing torque as a function of vibration frequency for materials which are difficult to machine. It was found that low-frequency vibrations in the axial direction are an effective means of reducing torque and increasing the stiffness of the tap when machining hard materials. The quality of the finished thread is considerably improved by this technique when especially tough materials such as 2Kh13 steel are being machined. Vibrations with a frequency of 400-500 Hz and peak-to-peak amplitude of relative displacement of tap and workpiece of 2-5 µ are recommended for most materials. These data can be taken as a basis for designing an industrial model of the vibration stand, or a vibration chuck.

2/3

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"



USSR

UDC: 621.317.738

## YELIZAROV, A. S.

"On the Principles of Designing Instruments for Measuring the Parameters of Nonmutual SHF Two-Terminal — Pair Networks"

Elektron. tekhnika. Nauchno-tekhn. sb. Kontrol'no-izmerit. apparatura (Electronic Technology. Scientific and Technical Collection. Monitoring and Measuring Equipment), 1970, vyp. 2(20), pp 3-8 (from RZh-Radiotekhnika, No 1, Jan 71, Abstract No 1A353)

Translation: The author examines general problems in the technology of measuring the parameters of nonmutual microwave two-terminal — pair networks. A number of initial assumptions are formulated together with principles for combining direct measurement of any mutual and nonmutual parameter in a single device. The results of this work may be used in developing general—purpose automatic instruments for measuring the parameters of practically all types of coaxial and waveguide two-terminal — pair networks having both mutual and nonmutual properties. Resume.

1/1

माध्यक्ष्याकार प्राप्तामा एक्ष्याकार प्राप्ता है। रामार प्राप्त कार्याकार प्राप्ता कार्याकार प्राप्त प्राप्त कार्याकार प्राप्ता प्राप्त कार्याकार कार्याकार कार्

USSR

UDC 629.114.4:669.14.018.298.2

GULYAEV, A.P., Dr. of Technical Sciences; ZIKEEV, V.N., Candidate of Techn. Sciences; SKOTNIKOV, V.V., Candidate of Techn. Sciences; KALININ, A.T., Cand. Of Techn. Sciences, and Yelizarov, B.I.

"New Carburizing Steels for Engine Parts of High-Load Capacity Vehicles"

Moscow, Avtomobil'naya Promyshlennost' No 4, Apr 71, pp 37-39

Abstract: Results are presented of an investigation of physical and mechanical properties of the 16KhNMFA and 16KhNIMFA steels obtained in electric furnace of 5-ton capacity and rolled into rods 90 and 110-mm in diameter, and intended for manufacturing the transmission box items. The kinetics of austenite transmechanical properties of steels in carburized and uncarburized state after nearly presented in tabular and annealing at 180-200° were studied. The critical points, austenite transformation curves, show two distinct zones of transformation, a ferrite-perlite and a bainite transformations, while the steel. The microstructures of both steels are similar. The brittleness was evaluated by the cold shorteness threshold position, determined by the

en den state en de servicione de la contraction de la contraction

USSR

GULYAEV, A.P., et al, Avtomobil'naya Promyshlennost' No 4, Apr 71, pp 37-39

fracture aspect during serial tests. Both steels satisfy the requirement  $T_{50} < -50^{\circ}$ . The comparative tests of various items made of these and other steels, carried out on test stands, confirmed the higher quality of the KL8KhNMFA steels over the 15KhGNTA steels.

2/2

-86--

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

ENGENERAL ENGELERAL ENGELE

USSR

UDC 669.017.1:539.56.001.5

1-1

ZIKEYEV, V. N., SKOTNIKOV, V. V., GULYAYEV, A. P., ABAKOV, V. T., and YELIZAROV, B. I.

"Study of Properties of Types 18KhNMFA and 18KhN1MFA Commercially Produced Experimental Steels"

Spetsial nyye Stali i Splavy [Special Steels and Alloys--Collection of Works], No 77, Metallurgiya Press, 1970, pp 207-214

Translation: It is demonstrated that the production, rolling, and heat treatment of types 18KhNMFA and 18KhN1MFA steels under industrial conditions cause no difficulties.

The experimental steels are superior in mechanical properties to type 15KhGNTA steel, used for important parts of motor vehicle engines. They have high brittle rupture resistance and hardenability. 2 figures; 3 tables.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

UDC 621.771.07

USSR

TROFIMOVSKIY, V. A., RUDNITSKIY, L. S., BERKOVSKIY, V. S., YELIZAROV, I. I., and AVRUNIN, P. M., Lutuginskiy Plant of Rolling-Mill Rolls; Moscow Institute of Steels and Alloys; "Dneprospetsstal' Plant," Dnepropetrovsk Metallurgical Institute

"Rolls for Rolling Hard-to-Work Steels"

Moscow, Metailurg, No 1, Jan 71, pp 31-34

Abstract: Rolling-mill rolls from both low-alloy and plain carbon cast iron steels with lameliar graphite, which have been used in the past did not provide proper-quality rolling stock or make possible rhythmic operation of the mills. In recent years extensive use has been made of alloyed quality steels having a higher hardness value and a low rolling temperature range. As a result, the industry faces higher requirements with respect to the wear resistance of passes and over-all service strength. This study involves rolls from cast iron injected with magnesium and cerium with a lower content of chromium, silicon, and phosphorus. Spheroidal graphita and a compact-grained structure stemming from reduced contents of throwium and silicon as well as from injection with magnesium have given the rolls good wear resistance, low 1/2

USSR

TROFIMOVSKIY, V. A., et al, Metallurg, No 1, Jan 71, pp 31-34

uniform frictional wear, and surface finish. Low phosphorus (up to 0.28%) and chromium (up to 0.3%) contents provide the required strength since the number of brittle components (carbides) is reduced. The new rolls have been introduced on all break-down and prefinishing stands of the Dneprospetsstal Plant. Tables in the original article cite test results of mechanical properties of rolls from magnesium cast iron and cast iron with lamellar graphite as well as comparative data on the resistance of both experimental and ordinary rolls.

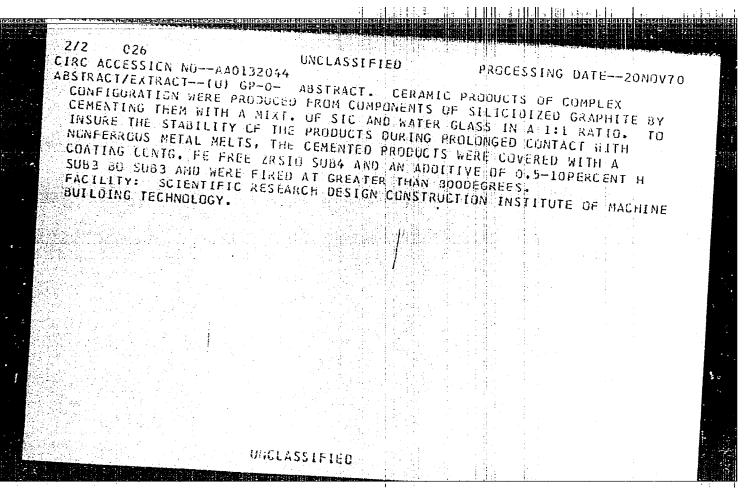
2/2

9n <u></u>

UNCLASSIFIED 1/2 TITLE-THE SYMBROME OF COCCYGODYNIA IN OSTECCHONDROSIS OF THE LUMBAR REGICN OF THE SPINE -U-AUTHOR-(04)-YUMASHEV, G.S., YELIZAROV, M.N., VARSHAVICHIK, F.P., FAYZIYEV, KH.F. CCUNTRY OF INFO-USSR SOURCE-KLINICHESKAYA MEDITSINA, 1970, VGL 48, NR 64 PP 116-119 DATE PUBLISHED----70 SUBJECT AREAS-BIGLOGICAL AND MEDICAL SCIENCES TOPIC TAGS--BONE DISEASE, PAIN, MEDICAL EXAMINATION, DIAGNOSTIC HEDICINE CONTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0497/T0/048/006/0116/0119 PROXY REEL/FRAME--3002/1881 CIRC ALCESSION NO--APO129241

2/2 UNCLASSIFIED PROCESSING DATE--20NOV70 CIRC ACCESSION ING--APO129241 ABSTRACT/EXTRACT--(U) SP-0- ABSTRACT. THE CONTROVERSIAL OPINIONS OF SOVIET AND FOREIGN AUTHORS OF THE URIGIN OF COCCYGEAL PAIN TESTIFY TO THE FACT THAT IT IS STILL INADEQUATELY STUDIED. LITERATURE SOURCES GIVE NO DATA ON THE RELATION OF COCCYGODYNIA WITH OSTEOCHONOROSIS OF THE LURNBAR REGION OF THE SPINE. IN 15 (13PERCENT) OUT OF 114 PATIENTS UNDER COSERVATION COCCYGODYNIA WAS OF A SOMEWHAT DIFFERENC CHARACTER THAN THAT DESCRIBED IN OTHER SOURCES. THUS, COCCYGEAL PAIN HAS COMBINED WITH PAIN IN THELUMBUSACKAL REGION; IT WAS ASSOCIATED WITH MOVEMENTS AND NOTICEBLY INTENSIFIED IN INDUCTION OF SYMPTOMS OF STRETCHING THE NERVE TRUNKS. IN SINGLE PURPOSE EXAMINATIONDE THE PATTENTS THE AUTHORS DIAGNOZED ESTEUCHGADRUSIS OF THE LUMBAR REGION OF THE SPINE. DIAGNOSIS WAS CENFIRMED BY MEANS OF EPIDUROGRAPHY AND DISCOGRAPHY. AFTER CCASERVATIVE TREATMENT OF LUMBAR CSTECCHONDROSIS A SIGNIFICANT IMPROVENENT OCCURRED IN ALMOST ALL PATIENTS AND THEY RESUMED THEIR WORK. THE AUTHORS ARE OF THE UPINION THAT COCCYGODYNIA MAY BE ONE OF THE SYMPTOMS OF ESTECCHONDROSIS OF THE LUMBAR REGION OF THE SPINE. FACILITY: KAFEORA TRAVMATOLOGII I ORTOPEDII I MOŠKOVSKOGO MEDITSINSKOGO INSTITUTA IN SECHENUVA, NEVROLUGICHESKOYE OTDELENLYE GORODSKOY KEINICHESKOY BOL'NITSY NO 57 RENTGENODIAGNOSTICHESKIY DIDEL MOSKUVSKOGO NAUCHNO-ISSLED. RENTGENO-RADIOLOGICHESKOGO INSTITUTA I UZBEKSKOGO NAUCHNU ISSLED. RETGENO-RADIOLUGICHESKOGO I ONKOLOGICHESKOGO INSTITUTA.

UNCLASS LETED.


GIRC ACCESSION NO--AAC132044

THE TABLES OF LED

PROXY REEL/FRAME--3004/1778

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

STEP\_NO--UR/0482/70/000/000/000/0000



USSR

YELIZAROV R. S.

UDC: 621.317.33

"Measuring Losses and Rectifier Ratio in Nonmutual Four-Terminal Networks"

Elektron tekimika. Kauchno-tekhn. sb. Kontrol no-izmarit. apparatura (Electronic Ingineering, Scientific Technical Collection, Control and Assurement Equipment) 1970, No. 3(21), pp 3-14 (from RZh-Radiotekanika, No. 3, March 71, Abstract No. 31593)

Translation: Some promising methods for measuring the operating parameters of nonmutual UHr four-terminal networks with ferrites are considered: forward, inverse, total losses, and the rectifier ratio of the four-terminal network. Two variants are proposed for perfecting known measurement systems for forward and inverse losses, as well as a complex automatic device for measuring fourterminal network operating parameters; the characteristic peculi-arity of this device is that direct measurement and investigation of the rectifier ratio characteristics are possible. Resume

1/1

**APPROVED FOR RELEASE: 09/01/2001** CIA-RDP86-00513R002203630003-2"

USSR

VDC: 519.2

YELIZAROV, Ye. Ya., CONCHAROV, A. N.

"Dynamics of Biocenoses With Regard to Polyphagia"

Kiev, Teoriya optimal'n. protsessov—sbornik (Theory of Optimum Processes—collection of works), 1972, pp 64-71 (from RZh-Kibernetika, No 7, Jul 73, abstract No 7, V281 by the authors)

Translation: The paper deals with the mathematical model of a biocenosis with one species of predator and several species of prey. It is usually assumed that the rate at which a predator consumes prey of a given species is proportional to the frequency of their encounters; this assumption is confirmed in the case of low concentrations of prey. This paper considers the case of high concentration of prey, where the predator shows selective activity, and its diet begins to be predominated by some of the species of prey which the predator prefers over other species.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

UDC: 66.074.7:546.432:541.46

USSR

KUZNETSOV, Yu. V., YELTZAROVA, A. N., LISITSYN, A. P., FAYZULLIN, F. Z.

"Concerning the Part Played by Ton Exchange in Precipitation of Radium From Sea Water"

Leningrad, Radiokhimiya, Vol 14, No 3, 1972, pp 441-446

Abstract: An investigation was undertaken to determine the extent to which ion exchange is responsible for the accumulation of 226Ra in sediment. Simultaneous direct determinations were made of the absolute concentrations of 226Rs in samples of bottom sediments taken from the Southern and Central sections of the Indian Ocean and from the equatorial section of the Pacific Ocean. The cation-exchange capacity of the same specimens was determined by two independent methods. Analysis of the results shows a direct relationship between cation-exchange capacity of ocean sediments and the 226Ra concentration in these sediments.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

1/2 009

UNCLASSIFIED PROCESSING DATE--20NOV70

TITLE--SPECTRUPHOTCMETRIC STUDY OF PLATINUM COMPLEXES WITH STANNOUS

CHLCRIDE -UAUTHOR-(02)-MATVIYENKO, L.G., YELIZAROVA. G.L.

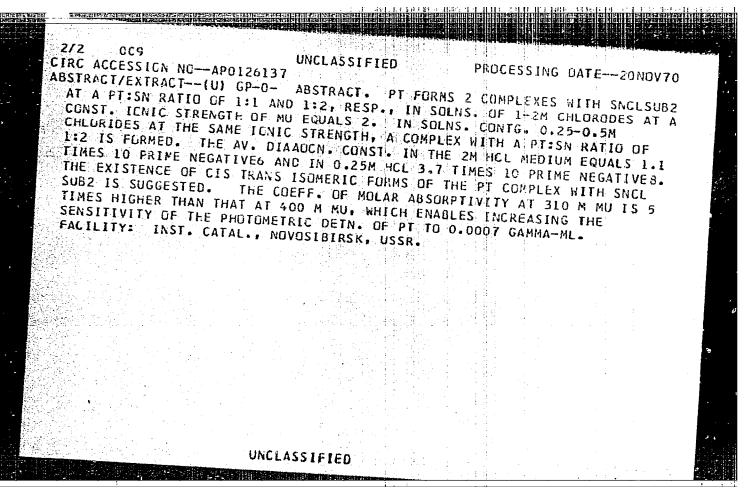
CCUNTRY OF INFO-USSR

SOURCE-ZH. ANAL. KHIM. 1970, 25(2), 301-6

DATE PUBLISHED----70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS--PLATINUM COMPOUND, COMPLEX COMPOUND, TIN CHLCRIDE, SPECTROPHCICMETRIC ANALYSIS


CENTREL MARKING-NO RESTRICTIONS

DGCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—3001/0382

STEP NO--UR/0075/70/025/002/0301/0306

CIRC ACCESSION NO--APO126137

UNCLASSIFLED



USSR

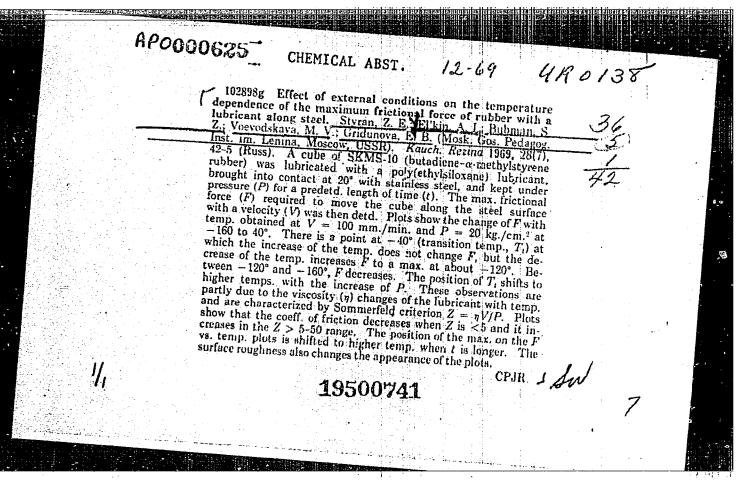
UDC 614.7:615.285.7:632.95]:613.2

SHITSKOVA, A. P., YELIZAROVA, O. N., and RYAZANOVA, R. A., Moscow Scientific Research Institute of Hygiene imeni F. F. Erisman

"The Pesticide Cycle in the Environment and Problems of Food Hygiene"

Moscow, Gigiyena i Sanitariya, No 11, 1970, pp 7-10

Abstract: Practical experience with pesticides shows that soil suffers the severest contamination. Organochlorine compounds can be detected in soil long after their initial application, for example, heptachlor and hexachloran are detected after 9-11 years. Trace amounts were found in the lower soil horizons 9-18 months after their initial application, pointing to the possible migration of pesticides via rainwater from upper layers to deeper layers, and their possible entrainment in ground water which is a source of potable water supplies. Soil composition and structure are important in the accumulation of toxic chemicals in rhizomes. For example, the greatest amount of lindane is detected in carrots grown on sandy loam, and the least -- in carrots grown on chernozem soil, though five times more toxic chemicals were applied in the latter case. From our data, potatoes grown in different soils acquired disagreeable organoleptic properties when carbathion was applied in several cases and adversely affected experimental animals.


USSR

SHITSKOVA, A. P., et al, Gigiyena i Sanitariya, No 11, 1970, pp 7-10

More toxic preparations are in use in treating forest tracts, meadows, and industrial crops, and the amounts applied are being increased. This leads to contamination of forest flora and fauna. To illustrate, after a forest was treated with lindane, the residual amount of the pesticide in grass and leaf samples was 2 mg/kg; in 30-60 days this decreased to 0.2 mg/kg.

2/2

77-



# Magnesium

USSR

UDC 669.018.29:669.018.672

DRITS, M. Ye., SVIDERSKAYA, Z. A., YELKIN, F. M., and TROKHOVA, V. F.

Sverkhlegkiye Konstruktsionnyye Splavy (Superlight Structural Alloys), Moscow, Izdatel'stvo "Nauka," 1972, 145 pp

Translation of Annotation: This monograph summarizes experimental studies on the structure and properties of magnesium-lithium alloys carried out in the Soviet Union and elsewhere. Systematized data are presented on the nature of the reaction of magnesium with lithium and other elements, as well as the dependence of properties of Mg-Li alloys on their composition, structure, and treatment. Information on the application of superlight alloys in various new branches of technology is also presented.

This monograph is intended for scientists and engineers at scientific research institutes, planning organization, and industrial design institutions dealing with the development, production, and application of light alloys. It may also be useful to teachers and students at higher educational institutions specializing in the metallurgy of light metals.

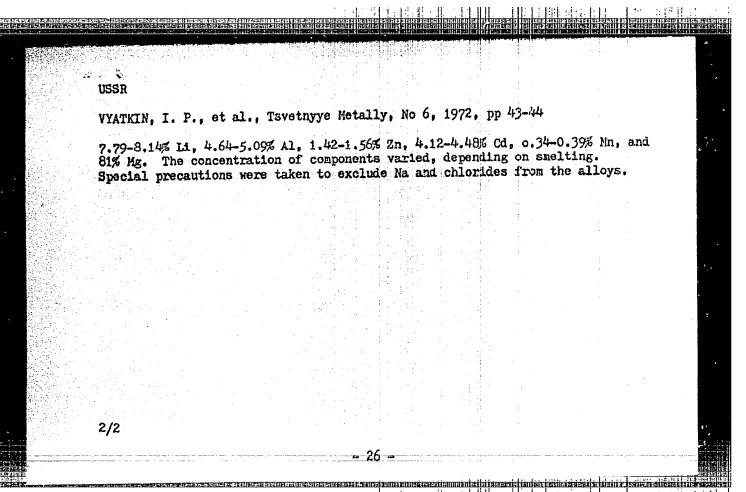
Translation of Table of Contents:

Page

|          | USSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
|          | 티 선생님이 살을 살아 있는데 그들은 이 독일을 생활했다. 그는 이 기를 살아 보는 것이다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |   |
|          | DRITS, M. Ye., et al., Sverkhlegkiye Konstruktsionnyye Splavy, Moscow, Izdatel'stvo "Nauka," 1972, 145 pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |   |
|          | Izdatel'stvo "Nauka," 1972, 145 pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |   |
|          | [요약] [10] 20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |   |
|          | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D          |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page       |   |
|          | Chapter 1. Physiochemical and Mechanical Properties of Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J          |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5          |   |
|          | Chapter 2. Interaction of Magnesium With Lithium and Other Elements Chapter 3. The Effect of Lithium and the R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12         |   |
| 6 V      | Chapter 3. The Effect of Lithium on the Properties of Magnesium  Chapter 4. Structure and Properties of Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32         |   |
| <u>.</u> | Formed on the Basic of Station Lithium Alloys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |   |
| X ·      | Formed on the Basis of $\alpha$ -Solid Solution Rich in Magnesium Chapter 5. Structure and Properties of Magnesium-Lithium Alloys Containing $(\alpha + \beta)$ Phonon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51         |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |   |
|          | Chapter 6. Magnesium-Lithium Allove Containing a pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77         |   |
|          | ordered it strengthening and Stability of Marks and in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88         |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |   |
|          | of Magnesium I telescon in Magnesium I telescon in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114        | 1 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101        |   |
|          | Chapter 9. Application of Magnesium-Lithium Alloys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 124        |   |
|          | the control of the co | 136        | 1 |
|          | Subject Index 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140<br>143 |   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143        |   |

### **Hagnesius**

USSR


UDC 669.721 884

VYATKIN, I. P., MUSHKOV, S. V., KECHIN, V.A., and YELHIN, F. M.

"Technological Requirements For the Production of Magnesium-Lithium Alloys"

Moscow, Tsvetnyye Metally, No 6, 1972, pp 43-44

Abstract: Two methods were considered for the preparation of magnesium-lithium alloys. One method required the use of a protective flux consisting of molten lithium chloride and lithium fluoride. It was unacceptable because of many difficulties encountered during the work. The second method uses argon as a protective atmosphere in a 500-kg crucible equipped with a cover. The charge elements are added in the following sequence: at first, a small emount of magnesium ingot with 1.8-2.5% Mn is melted in the crucible at 7000 for 4-5 hr, then a high-purity magnesium ingot with not more than 0.005% Na is added at the same temperature, followed by aluminum, zinc, cadmium, and lithium, in that order. The alloy was mixed for 5-15 min after the addition of each alloying element. All metals were added as ingots in order to eliminate impurities, especially Na. Lithium ingots were washed in kerosene at first, wiped up, and dried in air before being placed into the orucible. The whole production process took 9-10 hr. The pouring of the alloy was done at 700-710°C. The alloys (several smeltings) contained 1/2



USSR

UDC 669.721.5'884:539.4:539.56

GUR'YEV, I. I., YELKIN, F. M., KUDRYASHOV, V. G.

"Dependence of the Mechanical Properties of Magnesium and Binary Mg-Li Alloys on Temperature"

V sb. Struktura i svoystva legk, splavov (Structure and Properties of Light Alloys -- collection of works), Moscow, Nauka Press, 1971, pp 123-127 (from RZh-Metal-1urgiya, No 4, Apr 72, Abstract No 41654)

Translation: A study was made of the effect of alloying Li in the amount of 4, 8, and 14% on the mechanical properties of Ng at test temperatures from -196 to +300°. The increase in Li content in the alloys promotes an increase in plasticity by 5-10 times. The strength decreases by 2-3 times. The increase in the amount of beta-phase with body-centered cubic lattice Li in Mg-Li alloys increases the temperature sensitivity of their strength characteristics. For binary Mg-Li alloys, in contrast to pure Mg, the presence of a plasticity trough at defined test temperatures is characteristic. This indicates the inclination of these alloys toward embrittlement, caused probably by the presence of Na in the alloys. Alloying Mg with lithium essentially reduces the sensitivity of Mg-Li alloys to notching. Three illustrations and a 7-entry bibliography.

1/1

**APPROVED FOR RELEASE: 09/01/2001** CIA-RDP86-00513R002203630003-2"

USSR

VDC 541.11

PASECHNIK, V. A., SAMSONOV, G. V., and VELLKIN, G. E., Institute of High Molecular Compounds, Leningrad, Academy of Sciences USSR

"Thermodynamic Study of Ion-Exchange Equilibrium With Consideration for Solvation in the Ion-Exchange Resin"

Moscow, Zhurnal Fizicheskoy Khimii, Vol 44, No 4, Apr 70, pp 1065-1070

Abstract: A thermodynamic equation has been derived to correlate the constant of ion-exchange equilibrium and the difference of free swelling energy of ion-exchange resins in monoionic forms. The method proposed for analyzing the relation between the selectivity and swelling capacity of ionites is based on a new selection of standard states provided by dehydrated monoionic forms of ion-exchange resins. Use is made of a hypothetical model the admissibility of which for describing real systems may be questionable. The method fails to consider the totality of solvation effects in the exchange resin.

1/1

USSR

UDC 576.851.315.095.1+616-008.97(VIBRIO CHOLERAE)

YELKIN, I. I., Moscow Medical Institute imeni I. M. Sechenov

"Cholera Vibrio Survival Time in the Environment and Carrier State"

Moscow, Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, No 5, 1973, pp 79-83

Abstract: A review of the foreign and Soviet literature on the causative agents of cholera shows that there is no fundamental difference between Vibrio comma and the El Tor vibrio either in survival time in the environment or duration of the carrier state. Study of El Tor epidemics of recent years discloses no evidence that the prolonged vibrio carrier state plays a significant role in spreading or maintaining the disease. The vibrio carrier state is a common phenomenon in the USSR. It varies from region to region, depending on the number of cholera cases, living conditions, educational level of the population, and preventive measures taken by the authorities. Tables list the well water, and lake and river water.

1/1

- 22 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203630003-2"

USSR

UDC 614.4

BEZDENEZHNYKH, I. S., and YELKIN LINE Institute of Biophysics, Ministry of Health USSR, and First Moscow Medical Institute imeni Sechemov, Moscow

"Prospects for Improving Epidemiological Methods"

Moscow, Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, No 8, Aug 70, pp 3-7

Abstract: A mathematical approach to epidemiology, combined with the traditional methods of observation and experimentation, will facilitate the analysis and prognosis of epidemic processes. Models of important infections can be used to forecast the incidence of a disease, carrier state, and changes in the immunological structure of the population, as well as in the gathering and analysis of information to evaluate an epidemic situation. The introduction of computers promises extensive benefits by permitting continuous observation not only of the course of a disease but also of the timeliness, scope, and quality of preventive measures. Before computers can be used effectively, however, the present disorderly flow of epidemiological information must be systematized.

1/1

USSR

UDC 616.9-036.2-022.375

BEZDENEZHVYKH, I. S., and YELKIN, I. I., First Moscow Medical Institute imeni I. M. Sechenov

"The Effect of Migration and Other Factors on the Intensity of the Course of the Epidemic Process"

Moscow, Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, No 7, Jul 70, pp 5-8

Abstract: In a continuation of a discussion of the epidemic process begun in an earlier article published in this journal (1969, No. 2), the authors cite a variety of statistics on some of the factors that are increasing the incidence of infectious diseases and the likelihood of epidemics. Not only travel between countries but also migration within countries in assuming enormous proportions. For example, the number of people transported by railroads in 1966 increased from 248,500,000 in 1913 to 2,450,400,000 in 1966. Automobiles carried 2,048,900,000,000 persons in 1966 (as compared to none in 1913). Intraurban traffic and daily commuting are also adverse factors. For example, persons under 30 who spend more than one hour a day commuting are absent from work because of illness 1-1/2 times as often as those living within 30 minutes of their jobs. Crowded housing, vast increases in the number of children attending various institutions, and steady expansion of restaurants add to the potential threat of intestinal, respiratory, and other diseases.

UDC 614.441 Central Institute of USSR TEPLYAKOV, B. Ya., DROZDOVA, A. A., and YELKIN, I. I., "Toward a Rational System for Prompt Transmission of Information on the Incidence **Epidemiology** of Infectious Diseases" Moscow, Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, No 4, 1970, pp Abstract: The slow and inefficient system used in the USSR for reporting cases of infectious diseases is contrasted with that prevailing in the United States, and a successful experiment they conducted in 1968 to speed up the collection and transmission of information via telegraph and teletype is described. Tenday and monthly reports in coded form on the incidence of typhold, dysentery, infectious hepatitis, diphtheria, and seven other diseases were submitted by rayon (and city) and oblast sanitary epidemiological stations 2 or 3 and 5 or 6 days, respectively, after the report period to the appropriate agencies. Analysis of the results revealed comparatively few discrepancies between the ten-day and monthly reports, and a small number of garbles and distortions due to mechanical failure and telegrapher errors. Most of the discrepancies were

> **APPROVED FOR RELEASE: 09/01/2001** CIA-RDP86-00513R002203630003-2"

caused by diseases that present some diagnostic difficulties (typhoid, para-

typhoid, dysentery).

UNCLASSIFIED PROCESSING DATE-30DCT70
TITLE—THE USE OF MATHEMATICAL METHODS IN EPIDEMIOLOGY, REPORT II,

EMPIRICAL AND THEORETICAL DISTRIBUTIONS -UAUTHOR-(05)-BEZDENEZHNYKH, I.S., BURGASOV, YU.A., YELKIN, I.I., LEONTYEVA,
L.G., TKACHEVA, M.N.
COUNTRY OF INFO-USSR

SOURCE—ZHURNAL MIKROBIOLOGII, EPIDEMIOLOGII I IMMUNOBIOLOGII, /1970, NR 6, PP 3-9
DATE PUBLISHED----70

SUBJECT AREAS—BIOLOGICAL AND MEDICAL SCIENCES
TOPIC TAGS—EPIDEMIOLOGY, APPLIED MATHEMATICS

CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRANE--3001/0723

STEP NO--UR/0016/70/000/006/0003/0009

च्यान्तरकार का विवाद संस्थान का स्थापन का स्थापन का स्थापन का स्थापन के स्थापन के स्थापन के स्थापन के स्थापन क स्थापन के स्थापन के

CIRC ACCESSION NO--APOLZ6435

UNCLASSIFIED -